Skip to main content

Time series dataset for torch.

Project description

Time Series Dataset

PyPI version travis codecov GitHub license Requirements Status

Description

Time series dataset for Time series predictor

Installation

pip install time-series-dataset

Usage example

"""
FlightsDataset
"""

import calendar
import math
import numpy as np
import pandas as pd
import seaborn as sns
from datetime import datetime

from time_series_dataset import TimeSeriesDataset


def _raw_make_predictor(features, *reshape_args):
    #pylint: disable=too-many-function-args
    return np.concatenate(features, axis=-1).reshape(
        list(reshape_args) + [len(features)]).astype(np.float32)


def _make_predictor(features, number_of_training_examples):
    #pylint: disable=too-many-function-args
    return _raw_make_predictor(features, number_of_training_examples, -1)


def _get_labels(input_features, output_features):
    def _features_to_label_list(features):
        return [list(feature)[0] for feature in features]
    labels = {}
    labels['x'] = _features_to_label_list(input_features)
    labels['y'] = _features_to_label_list(output_features)
    return labels


class FlightsDataset(TimeSeriesDataset):
    """
    FlightsDataset class

    :param except_last_n: initialize the FlightsDataset without n last months
    """

    # pylint: disable=too-many-locals
    def __init__(self, except_last_n=0):
        flights_dataset = sns.load_dataset("flights")
        chopped_flights_dataset = flights_dataset[:len(
            flights_dataset)-except_last_n]
        passengers = chopped_flights_dataset['passengers']
        month = chopped_flights_dataset['month']
        year = chopped_flights_dataset['year']

        months_3l = [month_name[0:3]
                     for month_name in list(calendar.month_name)]
        month_number = [months_3l.index(_month)
                        for _month in month]

        passengers_df = pd.DataFrame(passengers)
        month_number_df = pd.DataFrame(data={'month_number': month_number})
        year_df = pd.DataFrame(year)

        number_of_training_examples = 1
        # Store month_number and year as _x
        input_features = [month_number_df, year_df]
        _x = _make_predictor(input_features, number_of_training_examples)

        # Store passengers as _y
        output_features = [passengers_df]
        _y = _make_predictor(output_features, number_of_training_examples)

        super().__init__(_x, _y, _get_labels(input_features, output_features))
        self.month_number_df = month_number_df
        self.year_df = year_df

    # pylint: disable=arguments-differ
    def make_future_dataframe(self, number_of_months, include_history=True):
        """
        make_future_dataframe

        :param number_of_months: number of months to predict ahead
        :param include_history: optional, selects if training history is to be included or not
        :returns: future dataframe with the selected amount of months
        """
        def create_dataframe(name, data):
            return pd.DataFrame(data={name: data})

        def create_month_dataframe(data):
            return create_dataframe('month_number', data)

        def create_year_dataframe(data):
            return create_dataframe('year', data)

        month_number_df = self.month_number_df
        year_df = self.year_df
        last_month = month_number_df.values[-1][0]
        last_year = year_df.values[-1][0]
        if not include_history:
            month_number_df = create_month_dataframe([])
            year_df = create_year_dataframe([])
        for i in range(number_of_months):
            month_index = last_month+i
            new_months = [math.fmod(month_index, 12)+1]
            new_years = [last_year + math.floor(month_index / 12)]
            month_number_df = month_number_df.append(
                create_month_dataframe(new_months), ignore_index=True)
            year_df = year_df.append(
                create_year_dataframe(new_years), ignore_index=True)
        input_features = [month_number_df, year_df]
        return _make_predictor(input_features, 1)


def convert_year_month_array_to_datetime(year_month_array):
    def convert_singe_year_month_array_to_datetime(single_year_month_array):
        return datetime(year=single_year_month_array[1], month=single_year_month_array[0], day=15)
    year_month_array_size = year_month_array.size
    if year_month_array_size == 2:
        return convert_singe_year_month_array_to_datetime(year_month_array)
    return [convert_singe_year_month_array_to_datetime(year_month_array[idx, ...]) for idx in range(len(year_month_array))]

Oze dataset history

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

time_series_dataset-0.0.9.tar.gz (4.7 kB view details)

Uploaded Source

Built Distribution

time_series_dataset-0.0.9-py3-none-any.whl (4.7 kB view details)

Uploaded Python 3

File details

Details for the file time_series_dataset-0.0.9.tar.gz.

File metadata

  • Download URL: time_series_dataset-0.0.9.tar.gz
  • Upload date:
  • Size: 4.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.2

File hashes

Hashes for time_series_dataset-0.0.9.tar.gz
Algorithm Hash digest
SHA256 435d580255ae0529d117ee07c759fa446696f8e6383920c719ef5b0dc6227010
MD5 9a74faf811e5afde746ef2ad036f7b0f
BLAKE2b-256 dbc85b5bd28805f2de32e16205f48dbf2650f3746195e89507c3071502223fad

See more details on using hashes here.

File details

Details for the file time_series_dataset-0.0.9-py3-none-any.whl.

File metadata

  • Download URL: time_series_dataset-0.0.9-py3-none-any.whl
  • Upload date:
  • Size: 4.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.2

File hashes

Hashes for time_series_dataset-0.0.9-py3-none-any.whl
Algorithm Hash digest
SHA256 d49c5469dfa7e539b6a6d5ca022962b9ea1104d1954c725236e7e414bb2b350e
MD5 350f4fce42bd20dba69681bddaa891e6
BLAKE2b-256 ca0df0a8cdf08d14d62af04f65bf46c52593c7f5b4e5b6273e4449a7d7f89f9c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page