Skip to main content

Neural netork models for time-series-predictor.

Project description

Time series models

PyPI version travis codecov GitHub license Requirements Status

Description

Time series neural network models for Time series predictor

Installation

pip install time-series-models

Usage example

from time_series_models import BenchmarkLSTM
from skorch.callbacks import EarlyStopping
from skorch.dataset import CVSplit
from torch.optim import Adam
from flights_time_series_dataset import FlightSeriesDataset
from time_series_predictor import TimeSeriesPredictor

tsp = TimeSeriesPredictor(
    BenchmarkLSTM(),
    lr = 1e-3,
    lambda1=1e-8,
    optimizer__weight_decay=1e-8,
    iterator_train__shuffle=True,
    early_stopping=EarlyStopping(patience=50),
    max_epochs=250,
    train_split=CVSplit(10),
    optimizer=Adam
)

past_pattern_length = 24
future_pattern_length = 12
pattern_length = past_pattern_length + future_pattern_length
fsd = FlightSeriesDataset(pattern_length, past_pattern_length, pattern_length, stride=1)
tsp.fit(fsd)
mean_r2_score = tsp.score(tsp.dataset)
print(f"Achieved R2 score: {mean_r2_score}")
assert mean_r2_score > -20

Oze dataset history

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

time-series-models-0.3.9.tar.gz (5.0 kB view details)

Uploaded Source

Built Distribution

time_series_models-0.3.9-py3-none-any.whl (6.2 kB view details)

Uploaded Python 3

File details

Details for the file time-series-models-0.3.9.tar.gz.

File metadata

  • Download URL: time-series-models-0.3.9.tar.gz
  • Upload date:
  • Size: 5.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.2

File hashes

Hashes for time-series-models-0.3.9.tar.gz
Algorithm Hash digest
SHA256 6eff8b88685f12c19e07c198573ef7e50a70e880fbc3109478d9104e0a0d576e
MD5 229d7505caa68cb2480e4491dd91a445
BLAKE2b-256 c486f58cf7567f92254cf7f3a375eee75e34146b091366b436d9b206ad4de464

See more details on using hashes here.

File details

Details for the file time_series_models-0.3.9-py3-none-any.whl.

File metadata

  • Download URL: time_series_models-0.3.9-py3-none-any.whl
  • Upload date:
  • Size: 6.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.2

File hashes

Hashes for time_series_models-0.3.9-py3-none-any.whl
Algorithm Hash digest
SHA256 7642eaf800e44b9aa0587b7a48b418fe29622e9047e5ae7be6f632bc9fa5464e
MD5 48c6c351c965c399430b4b829524e2cd
BLAKE2b-256 93ff09b5d663399a4551bc4c51585c7c78174d284fbd819e1be2cee7bac2d723

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page