Conveniently measure and compare the execution times of multiple statements.
Project description
timeit_compare
Conveniently measure and compare the execution times of multiple statements.
Installation
To install the package, run the following command:
pip install timeit_compare
Usage
Here is a simple example from the timeit library documentation:
>>> from timeit_compare import cmp
>>> cmp(
... "'-'.join(str(n) for n in range(100))",
... "'-'.join([str(n) for n in range(100)])",
... "'-'.join(map(str, range(100)))"
... )
timing now...
|████████████| 21/21 completed
Table. Comparison Results (unit: s)
───────────────────────────────────────────────────────────────────────────────────────────────────────────────
Idx Mean ↓ Median Min Max Stdev Stmt
───────────────────────────────────────────────────────────────────────────────────────────────────────────────
1 5.9e-6 75.7% █████▎ 5.9e-6 5.9e-6 6.0e-6 3.8e-8 '-'.join([str(n) for n in range(100)])
2 7.3e-6 93.4% ██████▌ 7.3e-6 7.2e-6 7.4e-6 7.6e-8 '-'.join(map(str, range(100)))
0 7.8e-6 100.% ███████ 7.8e-6 7.7e-6 8.0e-6 1.1e-7 '-'.join(str(n) for n in range(100))
───────────────────────────────────────────────────────────────────────────────────────────────────────────────
7 runs, 10290 loops each, total time 1.509s
The table shows some basic descriptive statistics on the execution time of each statement for comparison, including mean, median, minimum, maximum, and standard deviation.
In a command line interface, call as follows:
python -m timeit_compare - "'-'.join(str(n) for n in range(100))" - "'-'.join([str(n) for n in range(100)])" - "'-'.join(map(str, range(100)))"
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
timeit_compare-1.4.1.tar.gz
(11.2 kB
view details)
File details
Details for the file timeit_compare-1.4.1.tar.gz
.
File metadata
- Download URL: timeit_compare-1.4.1.tar.gz
- Upload date:
- Size: 11.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a460302df8979b430a4aef3c11671ba4c563707f27e1b78b69c6b65d6700f560 |
|
MD5 | 3ead22674f95ca8f2fb36bd3c68ca21c |
|
BLAKE2b-256 | 37814c7cf5292860a315dfef4686aba8f5db4fdf862fa683e911a9a523363ab1 |