A description of your project
Project description
Time Series Feature Engineering
Time series feature generator.
Install
pip install timeseries_feature_engineering
How to use
Add Date Parts
df = pd.DataFrame({'date': ['2019-12-04', None, '2019-11-15', '2019-10-24']})
df = add_datepart(df, 'date')
df.head()
<style scoped>
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
</style>
Year | Month | Week | Day | Dayofweek | Dayofyear | Is_month_end | Is_month_start | Is_quarter_end | Is_quarter_start | Is_year_end | Is_year_start | Elapsed | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 2019.0 | 12.0 | 49.0 | 4.0 | 2.0 | 338.0 | False | False | False | False | False | False | 1575417600 |
1 | NaN | NaN | NaN | NaN | NaN | NaN | False | False | False | False | False | False | None |
2 | 2019.0 | 11.0 | 46.0 | 15.0 | 4.0 | 319.0 | False | False | False | False | False | False | 1573776000 |
3 | 2019.0 | 10.0 | 43.0 | 24.0 | 3.0 | 297.0 | False | False | False | False | False | False | 1571875200 |
Add Moving Average Features
With weighted average.
Recency in an important factor in a time series. Values closer to the current date would hold more information.
df = pd.DataFrame({
'date': pd.date_range('2019-12-01', '2019-12-10'),
'sales': np.random.randint(100, 500, size=10)
})
df = add_moving_average_features(df, 'sales', windows=[3,5], weighted=True)
df.head(10)
<style scoped>
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
</style>
date | sales | sales_3p_MA | sales_5p_MA | |
---|---|---|---|---|
0 | 2019-12-01 | 155 | NaN | NaN |
1 | 2019-12-02 | 437 | NaN | NaN |
2 | 2019-12-03 | 361 | 352.000000 | NaN |
3 | 2019-12-04 | 356 | 371.166667 | NaN |
4 | 2019-12-05 | 490 | 423.833333 | 399.066667 |
5 | 2019-12-06 | 222 | 333.666667 | 353.133333 |
6 | 2019-12-07 | 197 | 254.166667 | 294.400000 |
7 | 2019-12-08 | 390 | 297.666667 | 316.000000 |
8 | 2019-12-09 | 159 | 242.333333 | 258.666667 |
9 | 2019-12-10 | 470 | 353.000000 | 318.133333 |
Without weighted average.
df = pd.DataFrame({
'date': pd.date_range('2019-12-01', '2019-12-10'),
'sales': np.random.randint(100, 500, size=10)
})
df = add_moving_average_features(df, 'sales', windows=[3,5], weighted=True)
df.head(10)
<style scoped>
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
</style>
date | sales | sales_3p_MA | sales_5p_MA | |
---|---|---|---|---|
0 | 2019-12-01 | 167 | NaN | NaN |
1 | 2019-12-02 | 458 | NaN | NaN |
2 | 2019-12-03 | 260 | 310.500000 | NaN |
3 | 2019-12-04 | 174 | 250.000000 | NaN |
4 | 2019-12-05 | 392 | 297.333333 | 301.266667 |
5 | 2019-12-06 | 401 | 360.166667 | 338.200000 |
6 | 2019-12-07 | 460 | 429.000000 | 379.200000 |
7 | 2019-12-08 | 381 | 410.666667 | 393.733333 |
8 | 2019-12-09 | 349 | 378.166667 | 389.533333 |
9 | 2019-12-10 | 365 | 362.333333 | 379.000000 |
Add Expanding Features
df = pd.DataFrame({
'date': pd.date_range('2019-12-01', '2019-12-10'),
'sales': np.random.randint(100, 500, size=10)
})
df = add_expanding_features(df, 'sales', period=3)
df.head()
<style scoped>
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
</style>
date | sales | sales_3p_expanding | |
---|---|---|---|
0 | 2019-12-01 | 178 | NaN |
1 | 2019-12-02 | 398 | NaN |
2 | 2019-12-03 | 399 | 325.0 |
3 | 2019-12-04 | 385 | 340.0 |
4 | 2019-12-05 | 136 | 299.2 |
Add Trend Features
df = pd.DataFrame({
'date': pd.date_range('2019-12-01', '2019-12-10'),
'sales': np.random.randint(100, 500, size=10)
})
df = add_trend_features(df, 'sales', windows=[3,7])
df.head(10)
<style scoped>
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
</style>
date | sales | sales_3p_trend | sales_7p_trend | |
---|---|---|---|---|
0 | 2019-12-01 | 237 | 0.000000 | 0.000000 |
1 | 2019-12-02 | 388 | 0.000000 | 0.000000 |
2 | 2019-12-03 | 384 | 0.000000 | 0.000000 |
3 | 2019-12-04 | 498 | 87.000000 | 0.000000 |
4 | 2019-12-05 | 275 | -37.666667 | 0.000000 |
5 | 2019-12-06 | 382 | -0.666667 | 0.000000 |
6 | 2019-12-07 | 132 | -122.000000 | 0.000000 |
7 | 2019-12-08 | 337 | 20.666667 | 14.285714 |
8 | 2019-12-09 | 496 | 38.000000 | 15.428571 |
9 | 2019-12-10 | 216 | 28.000000 | -24.000000 |
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file timeseries_feature_engineering-0.0.1.tar.gz
.
File metadata
- Download URL: timeseries_feature_engineering-0.0.1.tar.gz
- Upload date:
- Size: 13.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0cf810de2a60ce6569544e979db5ebe28be398318d7854dffd8dd9cbfa788979 |
|
MD5 | a687224259180b4e6f5f26aac26028d5 |
|
BLAKE2b-256 | b6e1007212232c8d0c3b36b762559ac1f3904d54afda1c16862bad95c751b44a |
File details
Details for the file timeseries_feature_engineering-0.0.1-py3-none-any.whl
.
File metadata
- Download URL: timeseries_feature_engineering-0.0.1-py3-none-any.whl
- Upload date:
- Size: 9.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a5547165b4c22d75e4cd9be496a648b8487985534479492a81b8199771be83c6 |
|
MD5 | 826101fc8d443a8809c3b7540093eab5 |
|
BLAKE2b-256 | 5434e0d8ad2643d8f324859fdb8d2a68a310eb3b954770bbd1168f7674bdf265 |