Skip to main content

timeseries-shaper filters, transforms and engineer your timeseries dataframe

Project description

timeseries-shaper

Timeseries-Shaper is a Python library for efficiently filtering and preprocessing time series data using pandas. It provides a set of tools to handle various data transformations, making data preparation tasks easier and more intuitive.

Besides that multiple engineering specific methods are utilized to make it fast and easy to work with time series data.

Features | Structure

├── timeseries_shaper
│   ├── base.py
│   ├── calculator
│   │   └── numeric_calc.py
│   ├── cycles
│   │   ├── cycle_processor.py
│   │   └── cycles_extractor.py
│   ├── events
│   │   ├── outlier_detection.py
│   │   ├── statistical_process_control.py
│   │   ├── tolerance_deviation.py
│   │   └── value_mapping.py
│   ├── filter
│   │   ├── boolean_filter.py
│   │   ├── custom_filter.py
│   │   ├── datetime_filter.py
│   │   ├── numeric_filter.py
│   │   └── string_filter.py
│   ├── functions
│   │   └── lambda_func.py
│   ├── loader
│   │   ├── metadata
│   │   │   ├── metadata_api_loader.py
│   │   │   └── metadata_json_loader.py
│   │   └── timeseries
│   │       ├── parquet_loader.py
│   │       ├── s3proxy_parquet_loader.py
│   │       └── timescale_loader.py
│   ├── stats
│   │   ├── boolean_stats.py
│   │   ├── numeric_stats.py
│   │   ├── string_stats.py
│   │   └── timestamp_stats.py
│   ├── time_stats
│   │   └── time_stats_numeric.py

Installation

Install timeseries-shaper using pip:

pip install timeseries-shaper

Useage

Here is a quick example to get you started:

import pandas as pd
from timeseries_shaper.filters import IntegerFilter, StringFilter

# Sample DataFrame
data = {
    'value_integer': [1, 2, None, 4, 5],
    'value_string': ['apple', 'banana', None, 'cherry', 'date']
}
df = pd.DataFrame(data)

# Initialize the filter object
integer_filter = IntegerFilter(df)
string_filter = StringFilter(df)

# Apply filters
filtered_integers = integer_filter.filter_value_integer_not_match(2)
filtered_strings = string_filter.filter_value_string_not_match('banana')

print(filtered_integers)
print(filtered_strings)

Documentation

For full documentation, visit GitHub Pages or check out the docstrings in the code.

Contributing

Contributions are welcome! For major changes, please open an issue first to discuss what you would like to change.

Please ensure to update tests as appropriate.

License

Distributed under the MIT License. See LICENSE for more information.

Development

  • Generate new pdocs: .\generate_docs.sh

  • Install package locally: pip install -e .

  • Run tests locally with pytest: pytest ./tests

  • Build package for upload: python setup.py sdist bdist_wheel

  • Upload build package to pypi: twine upload dist/* --verbose --skip-existing

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

timeseries-shaper-0.0.0.16.tar.gz (27.7 kB view details)

Uploaded Source

Built Distribution

timeseries_shaper-0.0.0.16-py3-none-any.whl (51.8 kB view details)

Uploaded Python 3

File details

Details for the file timeseries-shaper-0.0.0.16.tar.gz.

File metadata

  • Download URL: timeseries-shaper-0.0.0.16.tar.gz
  • Upload date:
  • Size: 27.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.5

File hashes

Hashes for timeseries-shaper-0.0.0.16.tar.gz
Algorithm Hash digest
SHA256 c183e655746b8b1b540ccd86ff224fd94c5474dd0d74d1cc1c054e8ee602bea1
MD5 b6424b15947f52cff5cdb4408f269617
BLAKE2b-256 e2349e4e099875bf69f1fbaaf64df39d8c3cb1a99fc7232d089eed9fe7975621

See more details on using hashes here.

File details

Details for the file timeseries_shaper-0.0.0.16-py3-none-any.whl.

File metadata

File hashes

Hashes for timeseries_shaper-0.0.0.16-py3-none-any.whl
Algorithm Hash digest
SHA256 be4767821f751a8ba5d690c87db48b605fb09a5a154e81f44df97f37e8b99b08
MD5 1b3b20656d4a29a543de226db8f50709
BLAKE2b-256 4c72313d2d1be016d90516ef06465bccdec2d2c26478fb95aa0106b82ac75fd7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page