Skip to main content

Scikit-learn style cross-validation classes for time series data

Project description

This package implements two cross-validation algorithms suitable to evaluate machine learning models based on time series datasets where each sample is tagged with a prediction time and an evaluation time.

Ressources

Installation

timeseriescv can be installed using pip:

>>> pip install timeseriescv

Content

For now the package contains two main classes handling cross-validation:

  • PurgedWalkForwardCV: Walk-forward cross-validation with purging.

  • CombPurgedKFoldCV: Combinatorial cross-validation with purging and embargoing.

Remarks concerning the API

The API is as similar to the scikit-learn API as possible. Like the scikit-learn cross-validation classes, the split method is a generator that yields a pair of numpy arrays containing the positional indices of the samples in the train and validation set, respectively. The main differences with the scikit-learn API are:

  • The split method takes as arguments not only the predictor values X, but also the prediction times pred_times and the evaluation times eval_times of each sample.

  • To stay as close to the scikit-learn API as possible, this data is passed as separate parameters. But in order to ensure that they are properly aligned, X, pred_times and eval_times are required to be pandas DataFrames/Series sharing the same index.

Check the docstrings of the cross-validation classes for more information.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

timeseriescv-0.2.tar.gz (6.7 kB view details)

Uploaded Source

File details

Details for the file timeseriescv-0.2.tar.gz.

File metadata

  • Download URL: timeseriescv-0.2.tar.gz
  • Upload date:
  • Size: 6.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: Python-urllib/3.6

File hashes

Hashes for timeseriescv-0.2.tar.gz
Algorithm Hash digest
SHA256 6937e6b10eb5c7dcc0cf790f4c40b6abdcf925f1f67358f917d605a2f8c5cf5e
MD5 87787d78e9af155d7f41426f5b402905
BLAKE2b-256 a21337fe80a5f6ddac54899ad4ccc4aea1a838a1d7bc2b9342bd4a2a42ea0680

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page