Skip to main content

Temporal boolean algebra.

Project description

Visual timing diagram example

timingdiagram

Work with discrete state changes over time.

  • Reduce data to state changes
  • Compare diagrams over time
  • Query state by time
  • Use any ordered index

Install

From PyPI with pip:

pip install timingdiagram-alkasm

From source:

git clone https://github.com/alkasm/timingdiagram
cd timingdiagram
pip install .

Note that you must have pip >= 19.0 installed in your environment to install from source, since this project uses the pyproject.toml file defined in PEP-0517 instead of setup.py. More from PyPA here.

Try it out

>>> from timingdiagram import TimingDiagram
>>> d1 = TimingDiagram(enumerate([False, False, False, True, True, False, True]))
>>> d2 = TimingDiagram(enumerate([False, True, False, False, True, False, False]))
>>> d1 | d2
TimingDiagram([(0, False), (1, True), (2, False), (3, True), (5, False), (6, True)])

Example

Suppose you had a log of users signing in and out of a service, and the log included the time, user id, and action the user took. We can view each user's login/logout history as a timing diagram, and simply & them all together to see when all users were logged in at the same time:

log = """2019-08-27T19:38:50 001768bf-af44-46a6-890d-048f2c50aa29 login
2019-08-27T19:51:11 084c07f0-dd0d-46a3-8eb5-1d4cb13756a4 logout
2019-08-27T19:55:25 001768bf-af44-46a6-890d-048f2c50aa29 logout
2019-08-27T19:58:37 001768bf-af44-46a6-890d-048f2c50aa29 login
2019-08-27T20:17:21 a8118353-eb81-4ce0-8d10-6f3f9de6d7ca login
2019-08-27T20:45:19 001768bf-af44-46a6-890d-048f2c50aa29 logout
2019-08-27T21:01:45 001768bf-af44-46a6-890d-048f2c50aa29 login
2019-08-27T21:18:09 001768bf-af44-46a6-890d-048f2c50aa29 logout
2019-08-27T22:02:37 084c07f0-dd0d-46a3-8eb5-1d4cb13756a4 login
2019-08-27T22:55:54 001768bf-af44-46a6-890d-048f2c50aa29 login
2019-08-27T23:08:07 001768bf-af44-46a6-890d-048f2c50aa29 logout
2019-08-27T23:23:04 a8118353-eb81-4ce0-8d10-6f3f9de6d7ca logout
2019-08-27T23:47:50 001768bf-af44-46a6-890d-048f2c50aa29 login
2019-08-27T23:55:10 084c07f0-dd0d-46a3-8eb5-1d4cb13756a4 logout
2019-08-27T23:56:33 001768bf-af44-46a6-890d-048f2c50aa29 logout""".split("\n")


from collections import defaultdict
from functools import reduce
from timingdiagram import TimingDiagram


sessions = defaultdict(list)
for row in log:
    ts, userid, action = row.split()
    sessions[userid].append((ts, action == "login"))

all_logged_in = reduce(lambda d1, d2: d1 & d2, map(TimingDiagram, sessions.values()))

From just a few lines of code, we get a timing diagram corresponding to when all the users were logged in:

TimingDiagram([
  ('2019-08-27T19:38:50', False), 
  ('2019-08-27T22:55:54', True), 
  ('2019-08-27T23:08:07', False), 
  ('2019-08-27T23:56:33', False)
 ])

So all users were logged in between 22:55:54 and 23:08:07 on 2019-08-27. The additional states at the beginning and end signify the start and end times of the logs.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

timingdiagram-alkasm-0.4.1.tar.gz (5.9 kB view details)

Uploaded Source

Built Distribution

timingdiagram_alkasm-0.4.1-py3-none-any.whl (4.5 kB view details)

Uploaded Python 3

File details

Details for the file timingdiagram-alkasm-0.4.1.tar.gz.

File metadata

  • Download URL: timingdiagram-alkasm-0.4.1.tar.gz
  • Upload date:
  • Size: 5.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-requests/2.21.0

File hashes

Hashes for timingdiagram-alkasm-0.4.1.tar.gz
Algorithm Hash digest
SHA256 58bba8ba507863ccc2c72979fcb0036015018e495bceed251d53a6edaff5654b
MD5 f4002412ab4e7897f9704c77f59e14f0
BLAKE2b-256 e37be7dd9f112158e6ec52b37cffb214c2db7636df9e0985357a51adca4d057e

See more details on using hashes here.

File details

Details for the file timingdiagram_alkasm-0.4.1-py3-none-any.whl.

File metadata

File hashes

Hashes for timingdiagram_alkasm-0.4.1-py3-none-any.whl
Algorithm Hash digest
SHA256 0858e7040a94be737ab786002ca53a881b8d24c354c532286bfaee0e52567c81
MD5 ba87f0d89ae72a6f5f4e855d5017f69f
BLAKE2b-256 a1347e1345bc94443e11375b8d09f9d0f8eaec325b2686513fd184e8f68f1b1e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page