Skip to main content

Temporal boolean algebra.

Project description

Visual timing diagram example


Work with discrete state changes over time.

  • Reduce data to state changes
  • Compare diagrams over time
  • Query state by time
  • Use any ordered index


From PyPI with pip:

pip install timingdiagram-alkasm

From source:

git clone
cd timingdiagram
pip install .

Note that you must have pip >= 19.0 installed in your environment to install from source, since this project uses the pyproject.toml file defined in PEP-0517 instead of More from PyPA here.

Try it out

>>> from timingdiagram import TimingDiagram
>>> d1 = TimingDiagram(enumerate([False, False, False, True, True, False, True]))
>>> d2 = TimingDiagram(enumerate([False, True, False, False, True, False, False]))
>>> d1 | d2
TimingDiagram([(0, False), (1, True), (2, False), (3, True), (5, False), (6, True)])


Suppose you had a log of users signing in and out of a service, and the log included the time, user id, and action the user took. We can view each user's login/logout history as a timing diagram, and simply & them all together to see when all users were logged in at the same time:

log = """2019-08-27T19:38:50 001768bf-af44-46a6-890d-048f2c50aa29 login
2019-08-27T19:51:11 084c07f0-dd0d-46a3-8eb5-1d4cb13756a4 logout
2019-08-27T19:55:25 001768bf-af44-46a6-890d-048f2c50aa29 logout
2019-08-27T19:58:37 001768bf-af44-46a6-890d-048f2c50aa29 login
2019-08-27T20:17:21 a8118353-eb81-4ce0-8d10-6f3f9de6d7ca login
2019-08-27T20:45:19 001768bf-af44-46a6-890d-048f2c50aa29 logout
2019-08-27T21:01:45 001768bf-af44-46a6-890d-048f2c50aa29 login
2019-08-27T21:18:09 001768bf-af44-46a6-890d-048f2c50aa29 logout
2019-08-27T22:02:37 084c07f0-dd0d-46a3-8eb5-1d4cb13756a4 login
2019-08-27T22:55:54 001768bf-af44-46a6-890d-048f2c50aa29 login
2019-08-27T23:08:07 001768bf-af44-46a6-890d-048f2c50aa29 logout
2019-08-27T23:23:04 a8118353-eb81-4ce0-8d10-6f3f9de6d7ca logout
2019-08-27T23:47:50 001768bf-af44-46a6-890d-048f2c50aa29 login
2019-08-27T23:55:10 084c07f0-dd0d-46a3-8eb5-1d4cb13756a4 logout
2019-08-27T23:56:33 001768bf-af44-46a6-890d-048f2c50aa29 logout""".split("\n")

from collections import defaultdict
from functools import reduce
from timingdiagram import TimingDiagram

sessions = defaultdict(list)
for row in log:
    ts, userid, action = row.split()
    sessions[userid].append((ts, action == "login"))

all_logged_in = reduce(lambda d1, d2: d1 & d2, map(TimingDiagram, sessions.values()))

From just a few lines of code, we get a timing diagram corresponding to when all the users were logged in:

  ('2019-08-27T19:38:50', False), 
  ('2019-08-27T22:55:54', True), 
  ('2019-08-27T23:08:07', False), 
  ('2019-08-27T23:56:33', False)

So all users were logged in between 22:55:54 and 23:08:07 on 2019-08-27. The additional states at the beginning and end signify the start and end times of the logs.

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for timingdiagram-alkasm, version 0.4.1
Filename, size File type Python version Upload date Hashes
Filename, size timingdiagram_alkasm-0.4.1-py3-none-any.whl (4.5 kB) File type Wheel Python version py3 Upload date Hashes View
Filename, size timingdiagram-alkasm-0.4.1.tar.gz (5.9 kB) File type Source Python version None Upload date Hashes View

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring DigiCert DigiCert EV certificate Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page