This is a pre-production deployment of Warehouse, however changes made here WILL affect the production instance of PyPI.
Latest Version Dependencies status unknown Test status unknown Test coverage unknown
Project Description

tinfiltering

This is the tinfiltering package, created to perform the automated filtering of 2D data points, based on the edges distance distribution of a Delaunay triangulation.

The methodology upon which this package is based on the initial steps of the algorithm proposed by Yang and Cui (2010) in the paper “A Novel Spatial Clustering Algorithm Based on Delaunay Triangulation”.

This package was developed while in my PhD research in the Department of Geography at University College London, supervised by Dr Mat Disney (Earth Observation/Remote Sensing).

If you have any problem, question or suggestion, please, don’t hesitate to contact the author.

Usage as module

>>> import tinfiltering
>>> tinfiltering.apply_filter(x, y)

Parameters

x, y: list or numpy.ndarray
Coordinates for the set of points to be filtered.

Returns

out_points: 2D numpy.ndarray
Coordinates for the filtered set of points.

Raises

ValueError
If input is in the wrong shape (the shapes of x and y should match).
TypeError
If the input is of the wrong type (the inputs must be a 1-D array or list)

Usage in console

>>> tinfiltering in_filename out_filename

Parameters

in_filename: str
Name of the file containing the numpy array point data to be filtered.
out_filename: str
Name of the file to save the numpy array of filtered point data.

Packages

  • tinfiltering
  • tinfiltering.test
  • tinfiltering.tin
  • Version 0.1.4

Dependencies

  • numpy
  • scipy

Author

  • Matheus Boni Vicari (@matt_bv)

Who do I talk to?

References

[1]X. Yang and W. Cui, “A Novel Spatial Clustering Algorithm Based on Delaunay Triangulation,” Journal of Software Engineering and Applications, Vol. 3 No. 2, 2010, pp. 141-149. doi: 10.4236/jsea.2010.32018.
Release History

Release History

0.1.4

This version

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.1.3

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.1.2

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.1.1

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

Download Files

Download Files

TODO: Brief introduction on what you do with files - including link to relevant help section.

File Name & Checksum SHA256 Checksum Help Version File Type Upload Date
tinfiltering-0.1.4.tar.gz (70.2 kB) Copy SHA256 Checksum SHA256 Source May 24, 2016

Supported By

WebFaction WebFaction Technical Writing Elastic Elastic Search Pingdom Pingdom Monitoring Dyn Dyn DNS HPE HPE Development Sentry Sentry Error Logging CloudAMQP CloudAMQP RabbitMQ Heroku Heroku PaaS Kabu Creative Kabu Creative UX & Design Fastly Fastly CDN DigiCert DigiCert EV Certificate Rackspace Rackspace Cloud Servers DreamHost DreamHost Log Hosting