Skip to main content

Tiny AI client for LLMs. As simple as it gets.

Project description

Tiny AI Client

Inspired by tinygrad and simpleaichat, tiny-ai-client is the easiest way to use and switch LLMs with vision and tool usage support. It works because it is tiny, simple and most importantly fun to develop.

I want to change LLMs with ease, while knowing what is happening under the hood. Langchain is cool, but became bloated, complicated there is just too much chaos going on. I want to keep it simple, easy to understand and easy to use. If you want to use a LLM and have an API key, you should not need to read a 1000 lines of code and write response.choices[0].message.content to get the response.

Simple and tiny, that's the goal.

Features:

  • OpenAI
  • Anthropic
  • Async
  • Tool usage
  • Structured output
  • Vision
  • PyPI package tiny-ai-client
  • Gemini (vision, no tools)
  • Ollama (text, no vision, no tools) (you can also pass a custom model_server_url to AI/AsyncAI)
    • To use it, model_name='ollama:llama3' or your model name.
  • Groq (text, tools, no vision)
    • To use it model_name='groq:llama-70b-8192' or your model name as in Groq docs.

Roadmap:

  • Gemini tools

Simple

tiny-ai-client is simple and intuitive:

  • Do you want set your model? Just pass the model name.
  • Do you want to change your model? Just change the model name.
  • Want to send a message? msg: str = ai("hello") and say goodbye to parsing a complex json.
  • Do you want to use a tool? Just pass the tool as a function
    • Type hint it with a single argument that inherits from pydantic.BaseModel and just pass the callable. AI will call it and get its results to you if the model wants to.
  • Want to use vision? Just pass a PIL.Image.Image.
  • Video? Just pass a list of PIL.Image.Image.

Tiny

  • tiny-ai-client is very small, its core logic is < 250 lines of code (including comments and docstrings) and ideally won't pass 500. It is and always will be easy to understand, tweak and use.
    • The core logic is in tiny_ai_client/models.py
    • Vision utils are in tiny_ai_client/vision.py
    • Tool usage utils are in tiny_ai_client/tools.py
  • The interfaces are implemented by subclassing tiny_ai_client.models.LLMClientWrapper binding it to a specific LLM provider. This logic might get bigger, but it is isolated in a single file and does not affect the core logic.

Usage

pip install tiny-ai-client

To test, set the following environment variables:

  • OPENAI_API_KEY
  • ANTHROPIC_API_KEY
  • GROQ_API_KEY
  • GOOGLE_API_KEY

Then

To run all examples:

./scripts/run-all-examples.sh

For OpenAI:

from tiny_ai_client import AI, AsyncAI

ai = AI(
    model_name="gpt-4o", system="You are Spock, from Star Trek.", max_new_tokens=128
)
response = ai("What is the meaning of life?")

ai = AsyncAI(
    model_name="gpt-4o", system="You are Spock, from Star Trek.", max_new_tokens=128
)
response = await ai("What is the meaning of life?")

For Anthropic:

from tiny_ai_client import AI, AsyncAI

ai = AI(
    model_name="claude-3-haiku-20240307", system="You are Spock, from Star Trek.", max_new_tokens=128
)
response = ai("What is the meaning of life?")

ai = AsyncAI(
    model_name="claude-3-haiku-20240307", system="You are Spock, from Star Trek.", max_new_tokens=128
)
response = await ai("What is the meaning of life?")

We also support tool usage for both. You can pass as many functions you want as type-hinted functions with a single argument that inherits from pydantic.BaseModel. AI will call the function and get its results to you.

from pydantic import BaseModel, Field

from tiny_ai_client import AI, AsyncAI


class WeatherParams(BaseModel):
    location: str = Field(..., description="The city and state, e.g. San Francisco, CA")
    unit: str = Field(
        "celsius", description="Temperature unit", enum=["celsius", "fahrenheit"]
    )


def get_current_weather(weather: WeatherParams):
    """
    Get the current weather in a given location
    """
    return f"Getting the current weather in {weather.location} in {weather.unit}."

ai = AI(
    model_name="gpt-4o",
    system="You are Spock, from Star Trek.",
    max_new_tokens=32,
    tools=[get_current_weather],
)
response = ai("What is the meaning of life?")
print(f"{response=}")
response = ai("Please get the current weather in celsius for San Francisco.")
print(f"{response=}")
response = ai("Did it work?")
print(f"{response=}")

And vision. Pass a list of PIL.Image.Image (or a single one) and we will handle the rest.

from tiny_ai_client import AI, AsyncAI
from PIL import Image

ai = AI(
    model_name="gpt-4o",
    system="You are Spock, from Star Trek.",
    max_new_tokens=32,
)

response = ai(
    "Who is on the images?",
    images[
        Image.open("assets/kirk.jpg"),
        Image.open("assets/spock.jpg")
    ]
)
print(f"{response=}")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tiny_ai_client-0.0.12.tar.gz (13.3 kB view details)

Uploaded Source

Built Distribution

tiny_ai_client-0.0.12-py3-none-any.whl (16.5 kB view details)

Uploaded Python 3

File details

Details for the file tiny_ai_client-0.0.12.tar.gz.

File metadata

  • Download URL: tiny_ai_client-0.0.12.tar.gz
  • Upload date:
  • Size: 13.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for tiny_ai_client-0.0.12.tar.gz
Algorithm Hash digest
SHA256 211f2cd5d575194d508538247c60a225d15f21854f9aaf6826d9a38791dc72a3
MD5 283d043a2a5e94cc9d52c1cfe36770fd
BLAKE2b-256 f1d82e6ed32a8a7fd4a3a9374b2c81ddf81083738a5a452096eed0f155911888

See more details on using hashes here.

File details

Details for the file tiny_ai_client-0.0.12-py3-none-any.whl.

File metadata

File hashes

Hashes for tiny_ai_client-0.0.12-py3-none-any.whl
Algorithm Hash digest
SHA256 4f5be6f533604c2166cf6d8ced8c8f652893a59ee97b8c426e8004aa356c7f7d
MD5 0bb7fac4c986d0f8bbdebd3255a8e33f
BLAKE2b-256 7130f0547cbaf1da9760d05eb4a0d23a79ae36033720f003f2e5b190d91e056c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page