You like pytorch? You like micrograd? You love tinygrad! heart
Project description
For something in between a pytorch and a karpathy/micrograd
This may not be the best deep learning framework, but it is a deep learning framework.
The Tensor class is a wrapper around a numpy array, except it does Tensor things.
Installation
pip3 install tinygrad
Example
from tinygrad.tensor import Tensor
x = Tensor.eye(3)
y = Tensor([[2.0,0,-2.0]])
z = y.dot(x).sum()
z.backward()
print(x.grad) # dz/dx
print(y.grad) # dz/dy
Same example in torch
import torch
x = torch.eye(3, requires_grad=True)
y = torch.tensor([[2.0,0,-2.0]], requires_grad=True)
z = y.matmul(x).sum()
z.backward()
print(x.grad) # dz/dx
print(y.grad) # dz/dy
Neural networks?
It turns out, a decent autograd tensor library is 90% of what you need for neural networks. Add an optimizer (SGD, RMSprop, and Adam implemented) from tinygrad.optim, write some boilerplate minibatching code, and you have all you need.
Neural network example (from test/test_mnist.py)
from tinygrad.tensor import Tensor
import tinygrad.optim as optim
from tinygrad.utils import layer_init_uniform
class TinyBobNet:
def __init__(self):
self.l1 = Tensor(layer_init_uniform(784, 128))
self.l2 = Tensor(layer_init_uniform(128, 10))
def forward(self, x):
return x.dot(self.l1).relu().dot(self.l2).logsoftmax()
model = TinyBobNet()
optim = optim.SGD([model.l1, model.l2], lr=0.001)
# ... and complete like pytorch, with (x,y) data
out = model.forward(x)
loss = out.mul(y).mean()
loss.backward()
optim.step()
The promise of small
tinygrad, with tests, will always be below 1000 lines. If it isn't, we will revert commits until tinygrad becomes smaller.
Running tests
python -m pytest
TODO
- Reduce code
- Increase speed
- Add features
- In that order
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file tinygrad-0.2.2.tar.gz
.
File metadata
- Download URL: tinygrad-0.2.2.tar.gz
- Upload date:
- Size: 10.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.6.0 requests/2.24.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 941ee6a2c745d74e3e256172c78d810a07a688b9548f29b3c364e72b71525486 |
|
MD5 | 128625dcca3c7be9b4f3cc37ecc13c44 |
|
BLAKE2b-256 | 79b8de75d29f8643899ccd8c56b4e2fc75322907addb06fad3937f58bc15b829 |
File details
Details for the file tinygrad-0.2.2-py3-none-any.whl
.
File metadata
- Download URL: tinygrad-0.2.2-py3-none-any.whl
- Upload date:
- Size: 7.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.6.0 requests/2.24.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ab846fb5c0a78622505b4dd18d42e8a611aae223e4734fb1fef042076cfe97ae |
|
MD5 | 4f2a7024969e67318eb7c6890546966f |
|
BLAKE2b-256 | 5a1e042d508281b5c62f2ddb73abf04d64c4a24777d90fbc820ac9c7e9ea16c0 |