Skip to main content

Dataset class for PyTorch and the TinyImageNet dataset, with automated download and extraction.

Project description

torchvision-tinyimagenet

Dataset class for PyTorch and the TinyImageNet dataset.

Installation

pip install tinyimagenet

How to use

from tinyimagenet import TinyImageNet
from pathlib import Path
import logging

logging.basicConfig(level=logging.INFO)

split ="val"
dataset = TinyImageNet(Path("~/.torchvision/tinyimagenet/"),split=split)
n = len(dataset)
print(f"TinyImageNet, split {split}, has  {n} samples.")
n_samples = 5
print(f"Showing info of {n_samples} samples...")
for i in range(0,n,n//n_samples):
    image,klass = dataset[i]
    print(f"Sample of class {klass:3d}, image {image}, words {dataset.idx_to_words[klass]}")

You can also check the quickstart notebook to peruse the dataset.

Finally, we also provide some example notebooks that use TinyImageNet with PyTorch models:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tinyimagenet-0.9.9.tar.gz (11.3 kB view details)

Uploaded Source

Built Distribution

tinyimagenet-0.9.9-py2.py3-none-any.whl (9.2 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file tinyimagenet-0.9.9.tar.gz.

File metadata

  • Download URL: tinyimagenet-0.9.9.tar.gz
  • Upload date:
  • Size: 11.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for tinyimagenet-0.9.9.tar.gz
Algorithm Hash digest
SHA256 bcbd21749abc63138fedf213501fd509c3e8495f2e78b8af5492338f876cc07a
MD5 90dd492af4bcc614cca0da96ead70b83
BLAKE2b-256 1e79a9284fd961664d6c23a4f85ca6ee7db82273f37d61cd7317bab83e4b223f

See more details on using hashes here.

File details

Details for the file tinyimagenet-0.9.9-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for tinyimagenet-0.9.9-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 941c7d3b19cb2f3fa719799530745a3cc0e7095a1990f2f5be107d355ec359df
MD5 d478384db7781856589d74fdf29825e0
BLAKE2b-256 5d0791f5937864082de49f5c32d2d79983829d38a1b911f5e0dc719e8cf16eb1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page