Skip to main content

Simplify numerical association rule mining

Project description

tinyNARM


PyPI Version PyPI - Python Version PyPI - Downloads Downloads

About

tinyNARM is an experimental effort in approaching/tailoring the classical Numerical Association Rule Mining (NARM) to limited hardware devices, e.g., ESP32 microcontrollers so that devices do not need to depend on remote servers for making decisions. Motivation mainly lies in smart agriculture, where Internet connectivity is unavailable in rural areas.

The current repository hosts a tinyNARM algorithm prototype initially developed in Python for fast prototyping.

Detailed insights

The current version includes (but is not limited to) the following functions:

  • loading datasets in CSV format,
  • discretizing numerical features to discrete classes,
  • association rule mining using the tinynarm approach,
  • easy comparison with the NiaARM approach.

Installation

pip

Install tinyNARM with pip:

pip install tinynarm

Usage

Basic run

from tinynarm import TinyNarm
from tinynarm.utils import Utils

tnarm = TinyNarm("new_dataset.csv")
tnarm.create_rules()

postprocess = Utils(tnarm.rules)
postprocess.add_fitness()
postprocess.sort_rules()
postprocess.rules_to_csv("rules.csv")
postprocess.generate_statistics()
postprocess.generate_stats_report(20)

Discretization

from tinynarm.discretization import Discretization

dataset = Discretization("datasets/sportydatagen.csv", 5)
data = dataset.generate_dataset()
dataset.dataset_to_csv(data, "new_dataset.csv")

References

[1] I. Fister Jr., A. Iglesias, A. Gálvez, J. Del Ser, E. Osaba, I Fister. Differential evolution for association rule mining using categorical and numerical attributes In: Intelligent data engineering and automated learning - IDEAL 2018, pp. 79-88, 2018.

[2] I. Fister Jr., V. Podgorelec, I. Fister. Improved Nature-Inspired Algorithms for Numeric Association Rule Mining. In: Vasant P., Zelinka I., Weber GW. (eds) Intelligent Computing and Optimization. ICO 2020. Advances in Intelligent Systems and Computing, vol 1324. Springer, Cham.

[3] I. Fister Jr., I. Fister A brief overview of swarm intelligence-based algorithms for numerical association rule mining. arXiv preprint arXiv:2010.15524 (2020).

[4] Stupan, Ž., Fister, I. Jr. (2022). NiaARM: A minimalistic framework for Numerical Association Rule Mining. Journal of Open Source Software, 7(77), 4448.

Cite us

Fister Jr, I., Fister, I., Galvez, A., & Iglesias, A. (2023, August). TinyNARM: Simplifying Numerical Association Rule Mining for Running on Microcontrollers. In International Conference on Soft Computing Models in Industrial and Environmental Applications (pp. 122-131). Cham: Springer Nature Switzerland.

License

This package is distributed under the MIT License. This license can be found online at http://www.opensource.org/licenses/MIT.

Disclaimer

This framework is provided as-is, and there are no guarantees that it fits your purposes or that it is bug-free. Use it at your own risk!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tinynarm-0.2.2.tar.gz (6.1 kB view details)

Uploaded Source

Built Distribution

tinynarm-0.2.2-py3-none-any.whl (7.5 kB view details)

Uploaded Python 3

File details

Details for the file tinynarm-0.2.2.tar.gz.

File metadata

  • Download URL: tinynarm-0.2.2.tar.gz
  • Upload date:
  • Size: 6.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.1 CPython/3.12.4 Linux/6.9.12-200.fc40.x86_64

File hashes

Hashes for tinynarm-0.2.2.tar.gz
Algorithm Hash digest
SHA256 f8cbbfab5f64b6a48db97358d0298bdb791c3e42e4d65b7382aff68a839479be
MD5 3137f6a17f539255815816dfe723754f
BLAKE2b-256 f19e4bf867b8b5ac163947188a8368b1795694d09587207ca7bb17ff5ad4b2c2

See more details on using hashes here.

File details

Details for the file tinynarm-0.2.2-py3-none-any.whl.

File metadata

  • Download URL: tinynarm-0.2.2-py3-none-any.whl
  • Upload date:
  • Size: 7.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.1 CPython/3.12.4 Linux/6.9.12-200.fc40.x86_64

File hashes

Hashes for tinynarm-0.2.2-py3-none-any.whl
Algorithm Hash digest
SHA256 c878a2ad8bf348932ff68f6e21c92c890d48d29c85c714f91556b2ae3fee3198
MD5 5f56dff3d641ebf4072d6cf877026388
BLAKE2b-256 f4a294fc66e7daa4df70e32a7bac8c43be78c27ccc9c8fdd6857194491224c0b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page