Skip to main content

Simplify numerical association rule mining

Project description

tinyNARM


PyPI Version PyPI - Python Version PyPI - Downloads Downloads

About

tinyNARM is an experimental effort in approaching/tailoring the classical Numerical Association Rule Mining (NARM) to limited hardware devices, e.g., ESP32 microcontrollers so that devices do not need to depend on remote servers for making decisions. Motivation mainly lies in smart agriculture, where Internet connectivity is unavailable in rural areas.

The current repository hosts a tinyNARM algorithm prototype initially developed in Python for fast prototyping.

Detailed insights

The current version includes (but is not limited to) the following functions:

  • loading datasets in CSV format,
  • discretizing numerical features to discrete classes,
  • association rule mining using the tinynarm approach,
  • easy comparison with the NiaARM approach.

Installation

pip

Install tinyNARM with pip:

pip install tinynarm

Usage

Basic run

from tinynarm import TinyNarm
from tinynarm.utils import Utils

tnarm = TinyNarm("new_dataset.csv")
tnarm.create_rules()

postprocess = Utils(tnarm.rules)
postprocess.add_fitness()
postprocess.sort_rules()
postprocess.rules_to_csv("rules.csv")
postprocess.generate_statistics()
postprocess.generate_stats_report(20)

Discretization

from tinynarm.discretization import Discretization

dataset = Discretization("datasets/sportydatagen.csv", 5)
data = dataset.generate_dataset()
dataset.dataset_to_csv(data, "new_dataset.csv")

References

[1] I. Fister Jr., A. Iglesias, A. Gálvez, J. Del Ser, E. Osaba, I Fister. Differential evolution for association rule mining using categorical and numerical attributes In: Intelligent data engineering and automated learning - IDEAL 2018, pp. 79-88, 2018.

[2] I. Fister Jr., V. Podgorelec, I. Fister. Improved Nature-Inspired Algorithms for Numeric Association Rule Mining. In: Vasant P., Zelinka I., Weber GW. (eds) Intelligent Computing and Optimization. ICO 2020. Advances in Intelligent Systems and Computing, vol 1324. Springer, Cham.

[3] I. Fister Jr., I. Fister A brief overview of swarm intelligence-based algorithms for numerical association rule mining. arXiv preprint arXiv:2010.15524 (2020).

[4] Stupan, Ž., Fister, I. Jr. (2022). NiaARM: A minimalistic framework for Numerical Association Rule Mining. Journal of Open Source Software, 7(77), 4448.

Cite us

Fister Jr, I., Fister, I., Galvez, A., & Iglesias, A. (2023, August). TinyNARM: Simplifying Numerical Association Rule Mining for Running on Microcontrollers. In International Conference on Soft Computing Models in Industrial and Environmental Applications (pp. 122-131). Cham: Springer Nature Switzerland.

License

This package is distributed under the MIT License. This license can be found online at http://www.opensource.org/licenses/MIT.

Disclaimer

This framework is provided as-is, and there are no guarantees that it fits your purposes or that it is bug-free. Use it at your own risk!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tinynarm-0.2.3.tar.gz (6.2 kB view details)

Uploaded Source

Built Distribution

tinynarm-0.2.3-py3-none-any.whl (7.5 kB view details)

Uploaded Python 3

File details

Details for the file tinynarm-0.2.3.tar.gz.

File metadata

  • Download URL: tinynarm-0.2.3.tar.gz
  • Upload date:
  • Size: 6.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.1 CPython/3.12.4 Linux/6.10.4-200.fc40.x86_64

File hashes

Hashes for tinynarm-0.2.3.tar.gz
Algorithm Hash digest
SHA256 c3f04a159657e8454ed11e90681860a0d48d81aa0c4cd066476008c61ed50e83
MD5 44d5969ba61bd7d14fd8e9b9dd4cce1b
BLAKE2b-256 3ccff1d29cca354889e0a4426341051fd3e2a43ab90725f447708aaf87d8c379

See more details on using hashes here.

File details

Details for the file tinynarm-0.2.3-py3-none-any.whl.

File metadata

  • Download URL: tinynarm-0.2.3-py3-none-any.whl
  • Upload date:
  • Size: 7.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.1 CPython/3.12.4 Linux/6.10.4-200.fc40.x86_64

File hashes

Hashes for tinynarm-0.2.3-py3-none-any.whl
Algorithm Hash digest
SHA256 526996a02cba9f2bb6e1d0c63456efd9947284b07fb3d9d4e04818506b169a85
MD5 dbcca0bbb043b9c82b942d0c87a277da
BLAKE2b-256 059b0b0184c4d4f2a17f969ac62fb5d058145ab53092acb6c8ec009509d1ebb3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page