Skip to main content

Simplify numerical association rule mining

Project description

tinyNARM

tinyNARM is an experimental effort in approaching/tailoring the classical Numerical Association Rule Mining (NARM) to limited hardware devices, e.g., ESP32 microcontrollers so that devices do not need to depend on remote servers for making decisions. Motivation mainly lies in smart agriculture, where Internet connectivity is unavailable in rural areas.

The current repository hosts a tinyNARM algorithm prototype initially developed in Python for fast prototyping.

🔍 Detailed insights

The current version includes (but is not limited to) the following functions:

  • loading datasets in CSV format,
  • discretizing numerical features to discrete classes,
  • association rule mining using the tinynarm approach,
  • easy comparison with the NiaARM approach.

📦 Installation

pip

To install tinyNARM with pip, use:

pip install tinynarm

🚀 Usage

Basic run

from tinynarm import TinyNarm
from tinynarm.utils import Utils

tnarm = TinyNarm("new_dataset.csv")
tnarm.create_rules()

postprocess = Utils(tnarm.rules)
postprocess.add_fitness()
postprocess.sort_rules()
postprocess.rules_to_csv("rules.csv")
postprocess.generate_statistics()
postprocess.generate_stats_report(20)

Discretization

from tinynarm.discretization import Discretization

dataset = Discretization("datasets/sportydatagen.csv", 5)
data = dataset.generate_dataset()
dataset.dataset_to_csv(data, "new_dataset.csv")

🔑 License

This package is distributed under the MIT License. This license can be found online at http://www.opensource.org/licenses/MIT.

Disclaimer

This framework is provided as-is, and there are no guarantees that it fits your purposes or that it is bug-free. Use it at your own risk!

📄 Cite us

Fister Jr, I., Fister, I., Galvez, A., & Iglesias, A. (2023, August). TinyNARM: Simplifying Numerical Association Rule Mining for Running on Microcontrollers. In International Conference on Soft Computing Models in Industrial and Environmental Applications (pp. 122-131). Cham: Springer Nature Switzerland.

📝 References

[1] I. Fister Jr., A. Iglesias, A. Gálvez, J. Del Ser, E. Osaba, I Fister. Differential evolution for association rule mining using categorical and numerical attributes In: Intelligent data engineering and automated learning - IDEAL 2018, pp. 79-88, 2018.

[2] I. Fister Jr., V. Podgorelec, I. Fister. Improved Nature-Inspired Algorithms for Numeric Association Rule Mining. In: Vasant P., Zelinka I., Weber GW. (eds) Intelligent Computing and Optimization. ICO 2020. Advances in Intelligent Systems and Computing, vol 1324. Springer, Cham.

[3] I. Fister Jr., I. Fister A brief overview of swarm intelligence-based algorithms for numerical association rule mining. arXiv preprint arXiv:2010.15524 (2020).

[4] Stupan, Ž., Fister, I. Jr. (2022). NiaARM: A minimalistic framework for Numerical Association Rule Mining. Journal of Open Source Software, 7(77), 4448.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tinynarm-0.3.0.tar.gz (6.4 kB view details)

Uploaded Source

Built Distribution

tinynarm-0.3.0-py3-none-any.whl (7.7 kB view details)

Uploaded Python 3

File details

Details for the file tinynarm-0.3.0.tar.gz.

File metadata

  • Download URL: tinynarm-0.3.0.tar.gz
  • Upload date:
  • Size: 6.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.1 CPython/3.12.4 Linux/6.10.4-200.fc40.x86_64

File hashes

Hashes for tinynarm-0.3.0.tar.gz
Algorithm Hash digest
SHA256 ae3075733d77b838fbb0045e93fc3638c1b42b9f0860c7db8dff1ccef640607b
MD5 afe470dab12be35621b22f9883e6483e
BLAKE2b-256 189be6eadaac371e88b048bd9116c286ec099dc4a12621f02c2708b613508cb7

See more details on using hashes here.

File details

Details for the file tinynarm-0.3.0-py3-none-any.whl.

File metadata

  • Download URL: tinynarm-0.3.0-py3-none-any.whl
  • Upload date:
  • Size: 7.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.1 CPython/3.12.4 Linux/6.10.4-200.fc40.x86_64

File hashes

Hashes for tinynarm-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 25b6037ee5d882ac800b00aa949ab1d560ff5d4dfa2470bdcb399ec0e7a37239
MD5 1cac0ac71a72d7ae05f5f30c79125601
BLAKE2b-256 22c69a5f84cbc8b09fba3ea94ca3ee5455b869330615396d16cc4254f3849be5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page