A small machine learning package, which can help people learn ML more easier
Project description
tinysklearn
仿制了部分sklearn接口,结构简单,容易理解,非常适合机器学习入门
使用方法
- 安装
pip install tinysklearn
- 使用
使用方法和sklearn是一致的(至少实现了fit,predict,transform,score这四种方法)
from tinysklearn.tinysklearn import LinearRegression
from tinysklearn.datasets import load_boston
from tinysklearn.preprocessing import StandardScaler
from tinysklearn.neighbors import KNeighborsClassifier
from tinysklearn.model_selection import train_test_split
from tinysklearn.decomposition import PCA
from tinysklearn.metrics import mean_absolute_error
#读取数据
boston = load_boston()
x = boston.data
y = boston.target
#分割训练集测试集
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=666666)
#构建模型,训练
lr = LinearRegression()
lr.fit(x_train, x_test)
#预测
lr.predict(x_test)
#评估
lr.score(x_test, y_test)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
tinysklearn-0.0.3.tar.gz
(5.4 kB
view hashes)