Skip to main content

Simple access to the TIRA API.

Project description

The TIRA Client

This is a python client for TIRA.io. Please find the documentation online.

Setup REST Client to Access Non-Public Endpoints

To access non-public endpoints, you will need an authentication via an API key to ensure that you have the correct access credentials. Please generate your API key online at tira.io/admin/api/keys and login your tira client:

tira-cli login --token YOUR-TOKEN-HERE

Download The results of some Submission

You can download runs of published and unblinded submissions via:

from tira.rest_api_client import Client

tira = Client()
output = tira.get_run_output('<task>/<team>/<approach>', '<dataset>')

As an example, you can download all baseline BM25 runs submitted to TIREx via:

from tira.rest_api_client import Client
from tira.tirex import TIREX_DATASETS

tira = Client()

for dataset in TIREX_DATASETS:
    output = tira.get_run_output('ir-benchmarks/tira-ir-starter/BM25 Re-Rank (tira-ir-starter-pyterrier)', dataset)

Overview of public submissions

As an example, you can see all public software submissions submitted to TIREx via:

from tira.rest_api_client import Client

tira = Client()
submissions = tira.all_softwares("ir-benchmarks")

Export datasets

You can export datasets if you are the owner or if the dataset is public. Export a dataset via the cli:

tira-run --export-dataset '<task>/<tira-dataset>' --output-directory tira-dataset

Export a dataset via the python API:

from tira.rest_api_client import Client

tira = Client()
tira.download_dataset('<task>', '<tira-dataset>')

Running Jupyter Notebooks with TIRA

docker build -t tira/submission-base-image:1.0.0 -f Dockerfile .

Testing the model locally can be done using the following command:

tira-run \
  --input-directory ${PWD}/input \
  --output-directory ${PWD}/output \
  --image tira/submission-base-image:1.0.0 \
  --command 'tira-run-notebook --input $inputDataset --output $outputDir /workspace/template-notebook.ipynb'

Afterwards you can push the image to TIRA

docker push tira/submission-base-image:1.0.0

and set the command:

tira-run-notebook --input $inputDataset --output $outputDir /workspace/template-notebook.ipynb

Finally, if the actual processing in notebook is toggled via is_running_as_inference_server() (as seen in the template notebook) and your notebook defines a function named predict in the format

def predict(input_list: List) -> List:

you can start an inference server for your model with:

PORT=8001

docker run --rm -it --init \
  -v "$PWD/logs:/workspace/logs" \
  -p $PORT:$PORT \
  tira/submission-base-image:1.0.0 \
  tira-run-inference-server --notebook /workspace/template-notebook.ipynb --port $PORT

Exemplary request for a server running on localhost:8001 are

# POST (JSON list as payload)
curl -X POST -H "application/json" \
  -d "[\"element 1\", \"element 2\", \"element 3\"]" \
  localhost:8001

and

# GET (JSON object string(s) passed to the 'payload' parameter)
curl "localhost:8001?payload=\"element+1\"&payload=\"element+2\"&payload=\"element+3\""

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tira-0.0.136.tar.gz (86.6 kB view details)

Uploaded Source

Built Distribution

tira-0.0.136-py3-none-any.whl (101.3 kB view details)

Uploaded Python 3

File details

Details for the file tira-0.0.136.tar.gz.

File metadata

  • Download URL: tira-0.0.136.tar.gz
  • Upload date:
  • Size: 86.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.4

File hashes

Hashes for tira-0.0.136.tar.gz
Algorithm Hash digest
SHA256 055a53f2c1dc1c859e9e3046cece058d35153f2f4b0e09696cdd281fe2158d89
MD5 70600cdd0798a812f2284b486107953f
BLAKE2b-256 cb2dde36164e6f9b13adc415aa0bdf6cf035a947560e6626c727f607abd20d60

See more details on using hashes here.

File details

Details for the file tira-0.0.136-py3-none-any.whl.

File metadata

  • Download URL: tira-0.0.136-py3-none-any.whl
  • Upload date:
  • Size: 101.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.4

File hashes

Hashes for tira-0.0.136-py3-none-any.whl
Algorithm Hash digest
SHA256 bb6065e1340ec3ef5be0766dfb30a97f771913a093b07253b402e03416b24c30
MD5 f6c8e2ff9e0df12d4b74b101577b496f
BLAKE2b-256 b4cc15926c3bbb697f9515942f60fa6d0b4b0c93b6faab6d1217f769700ad8e0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page