Skip to main content

Simple access to the TIRA API.

Project description

The TIRA Client

This is a python client for TIRA.io.

Setup REST Client to Access Non-Public Endpoints

To access non-public endpoints, you will need an authentication via an API key to ensure that you have the correct access credentials. Please generate your API key online at tira.io/admin/api/keys and login your tira client:

tira-cli login --token YOUR-TOKEN-HERE

Download The results of some Submission

You can download runs of published and unblinded submissions via:

from tira.rest_api_client import Client

tira = Client()
output = tira.get_run_output('<task>/<team>/<approach>', '<dataset>')

As an example, you can download all baseline BM25 runs submitted to TIREx via:

from tira.rest_api_client import Client
from tira.tirex import TIREX_DATASETS

tira = Client()

for dataset in TIREX_DATASETS:
    output = tira.get_run_output('ir-benchmarks/tira-ir-starter/BM25 Re-Rank (tira-ir-starter-pyterrier)', dataset)

Overview of public submissions

As an example, you can see all public software submissions submitted to TIREx via:

from tira.rest_api_client import Client

tira = Client()
submissions = tira.all_softwares("ir-benchmarks")

Export datasets

You can export datasets if you are the owner or if the dataset is public. Export a dataset via the cli:

tira-run --export-dataset '<task>/<tira-dataset>' --output-directory tira-dataset

Export a dataset via the python API:

from tira.rest_api_client import Client

tira = Client()
tira.download_dataset('<task>', '<tira-dataset>')

Running Jupyter Notebooks with TIRA

docker build -t tira/submission-base-image:1.0.0 -f Dockerfile .

Testing the model locally can be done using the following command:

tira-run \
  --input-directory ${PWD}/input \
  --output-directory ${PWD}/output \
  --image tira/submission-base-image:1.0.0 \
  --command 'tira-run-notebook --input $inputDataset --output $outputDir /workspace/template-notebook.ipynb'

Afterwards you can push the image to TIRA

docker push tira/submission-base-image:1.0.0

and set the command:

tira-run-notebook --input $inputDataset --output $outputDir /workspace/template-notebook.ipynb

Finally, if the actual processing in notebook is toggled via is_running_as_inference_server() (as seen in the template notebook) and your notebook defines a function named predict in the format

def predict(input_list: List) -> List:

you can start an inference server for your model with:

PORT=8001

docker run --rm -it --init \
  -v "$PWD/logs:/workspace/logs" \
  -p $PORT:$PORT \
  tira/submission-base-image:1.0.0 \
  tira-run-inference-server --notebook /workspace/template-notebook.ipynb --port $PORT

Exemplary request for a server running on localhost:8001 are

# POST (JSON list as payload)
curl -X POST -H "application/json" \
  -d "[\"element 1\", \"element 2\", \"element 3\"]" \
  localhost:8001

and

# GET (JSON object string(s) passed to the 'payload' parameter)
curl "localhost:8001?payload=\"element+1\"&payload=\"element+2\"&payload=\"element+3\""

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tira-0.0.128.tar.gz (76.7 kB view details)

Uploaded Source

Built Distribution

tira-0.0.128-py3-none-any.whl (90.0 kB view details)

Uploaded Python 3

File details

Details for the file tira-0.0.128.tar.gz.

File metadata

  • Download URL: tira-0.0.128.tar.gz
  • Upload date:
  • Size: 76.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for tira-0.0.128.tar.gz
Algorithm Hash digest
SHA256 d7ef020dcb5ae0a955f28a689be42bd763332487d1ea930c225abb0f736777a4
MD5 05f951fc723f7406d8d7c34c9a061f85
BLAKE2b-256 70c389dda52ce924002cdd6117c1ba6edc14622a0688890549b0284661403962

See more details on using hashes here.

File details

Details for the file tira-0.0.128-py3-none-any.whl.

File metadata

  • Download URL: tira-0.0.128-py3-none-any.whl
  • Upload date:
  • Size: 90.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for tira-0.0.128-py3-none-any.whl
Algorithm Hash digest
SHA256 bc928893eb61d966d55136e2f8d848f9179aca5af6acc358eebccb47b9695abc
MD5 9c07c75d6b9612aab19f7068c1e4e782
BLAKE2b-256 2b687043ffc359232e8fb9a835d564317f59c535bf48275b78757d98bc14a8e0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page