Skip to main content

Simple access to the TIRA API.

Project description

Running Jupyter Notebooks with TIRA

docker build -t tira/submission-base-image:1.0.0 -f Dockerfile .

Testing the model locally can be done using the following command:

tira-run \
  --input-directory ${PWD}/input \
  --output-directory ${PWD}/output \
  --image tira/submission-base-image:1.0.0 \
  --command 'tira-run-notebook --input $inputDataset --output $outputDir /workspace/template-notebook.ipynb'

Afterwards you can push the image to TIRA

docker push tira/submission-base-image:1.0.0

and set the command:

tira-run-notebook --input $inputDataset --output $outputDir /workspace/template-notebook.ipynb

Finally, if the actual processing in notebook is toggled via is_running_as_inference_server() (as seen in the template notebook) and your notebook defines a function named predict in the format

def predict(input_list: List) -> List:

you can start an inference server for your model with:

PORT=8001

docker run --rm -it --init \
  -v "$PWD/logs:/workspace/logs" \
  -p $PORT:$PORT \
  tira/submission-base-image:1.0.0 \
  tira-run-inference-server --notebook /workspace/template-notebook.ipynb --port $PORT

Exemplary request for a server running on localhost:8001 are

# POST (JSON list as payload)
curl -X POST -H "application/json" \
  -d "[\"element 1\", \"element 2\", \"element 3\"]" \
  localhost:8001

and

# GET (JSON object string(s) passed to the 'payload' parameter)
curl "localhost:8001?payload=\"element+1\"&payload=\"element+2\"&payload=\"element+3\""

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tira-0.0.34.tar.gz (20.0 kB view details)

Uploaded Source

Built Distribution

tira-0.0.34-py3-none-any.whl (23.6 kB view details)

Uploaded Python 3

File details

Details for the file tira-0.0.34.tar.gz.

File metadata

  • Download URL: tira-0.0.34.tar.gz
  • Upload date:
  • Size: 20.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for tira-0.0.34.tar.gz
Algorithm Hash digest
SHA256 9653952c6ab7d78ed4bf4b75be6a1b95dcd419a2fd746d6f3e1d6c99bd011d55
MD5 8518de5eca18fbb49dfab0894af224e9
BLAKE2b-256 e9afc0a766737a22c5eb461b98e5acd24e06f241ba671fabc0dd40346360436a

See more details on using hashes here.

File details

Details for the file tira-0.0.34-py3-none-any.whl.

File metadata

  • Download URL: tira-0.0.34-py3-none-any.whl
  • Upload date:
  • Size: 23.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for tira-0.0.34-py3-none-any.whl
Algorithm Hash digest
SHA256 abfaf355cd0b2c08eb23de71de6e8243185617aa313b504ebca043e13d08c9b6
MD5 01b9ea5206b105dd5dabc4a230e7c55f
BLAKE2b-256 ded4ff700ad31c8e5502e37fee382d9c0851bb39ae5670f181c4cf199ddf892a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page