Skip to main content

Simple access to the TIRA API.

Project description

Running Jupyter Notebooks with TIRA

docker build -t tira/submission-base-image:1.0.0 -f Dockerfile .

Testing the model locally can be done using the following command:

tira-run \
  --input-directory ${PWD}/input \
  --output-directory ${PWD}/output \
  --image tira/submission-base-image:1.0.0 \
  --command 'tira-run-notebook --input $inputDataset --output $outputDir /workspace/template-notebook.ipynb'

Afterwards you can push the image to TIRA

docker push tira/submission-base-image:1.0.0

and set the command:

tira-run-notebook --input $inputDataset --output $outputDir /workspace/template-notebook.ipynb

Finally, if the actual processing in notebook is toggled via is_running_as_inference_server() (as seen in the template notebook) and your notebook defines a function named predict in the format

def predict(input_list: List) -> List:

you can start an inference server for your model with:

PORT=8001

docker run --rm -it --init \
  -v "$PWD/logs:/workspace/logs" \
  -p $PORT:$PORT \
  tira/submission-base-image:1.0.0 \
  tira-run-inference-server --notebook /workspace/template-notebook.ipynb --port $PORT

Exemplary request for a server running on localhost:8001 are

# POST (JSON list as payload)
curl -X POST -H "application/json" \
  -d "[\"element 1\", \"element 2\", \"element 3\"]" \
  localhost:8001

and

# GET (JSON object string(s) passed to the 'payload' parameter)
curl "localhost:8001?payload=\"element+1\"&payload=\"element+2\"&payload=\"element+3\""

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tira-0.0.37.tar.gz (22.2 kB view details)

Uploaded Source

Built Distribution

tira-0.0.37-py3-none-any.whl (26.1 kB view details)

Uploaded Python 3

File details

Details for the file tira-0.0.37.tar.gz.

File metadata

  • Download URL: tira-0.0.37.tar.gz
  • Upload date:
  • Size: 22.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for tira-0.0.37.tar.gz
Algorithm Hash digest
SHA256 903b809d983634ca5bfda0458e383c7a48fefd522350224a75c033d893d87dc1
MD5 520ba477320649480b357d2089906c37
BLAKE2b-256 7bea57ebc4d5aff2f1c2d466f96c87463d6263201457c5488afaaacebc613c63

See more details on using hashes here.

File details

Details for the file tira-0.0.37-py3-none-any.whl.

File metadata

  • Download URL: tira-0.0.37-py3-none-any.whl
  • Upload date:
  • Size: 26.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for tira-0.0.37-py3-none-any.whl
Algorithm Hash digest
SHA256 77de73db38c9fb79d06ef6be207dbf6dc894d11d4c85a96675482a39c6793e82
MD5 cc010e20bd3c383e9bcd084eda6ba614
BLAKE2b-256 ddb827325c25b9664a761028d3c635ceca319329d3021eaa38dfbb5a886885da

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page