Skip to main content

Simple access to the TIRA API.

Project description

The TIRA Client

This is a python client for TIRA.io.

Setup REST Client to Access Non-Public Endpoints

To access non-public endpoints, you will need an authentication via an API key to ensure that you have the correct access credentials. Please generate your API key online at tira.io/admin/api/keys and create a credentials file at ~/.tira/.tira-settings.json with the following content:

{"api_key": "<YOUR-API-KEY>"}

Download The results of some Submission

You can download runs of published and unblinded submissions via:

from tira.rest_api_client import Client

tira = Client()
output = tira.get_run_output('<task>/<team>/<approach>', '<dataset>')

As an example, you can download all baseline BM25 runs submitted to TIREx via:

from tira.rest_api_client import Client

tira = Client()
datasets = ['antique-test-20230107-training', 'argsme-touche-2020-task-1-20230209-training', 'argsme-touche-2021-task-1-20230209-training', 'clueweb09-en-trec-web-2009-20230107-training', 'clueweb09-en-trec-web-2010-20230107-training', 'clueweb09-en-trec-web-2011-20230107-training', 'clueweb09-en-trec-web-2012-20230107-training', 'clueweb12-touche-2020-task-2-20230209-training', 'clueweb12-touche-2021-task-2-20230209-training', 'clueweb12-trec-web-2013-20230107-training', 'clueweb12-trec-web-2014-20230107-training', 'cord19-fulltext-trec-covid-20230107-training', 'cranfield-20230107-training', 'disks45-nocr-trec-robust-2004-20230209-training', 'disks45-nocr-trec7-20230209-training', 'disks45-nocr-trec8-20230209-training', 'gov-trec-web-2002-20230209-training', 'gov-trec-web-2003-20230209-training', 'gov-trec-web-2004-20230209-training', 'gov2-trec-tb-2004-20230209-training', 'gov2-trec-tb-2005-20230209-training', 'gov2-trec-tb-2006-20230209-training', 'medline-2004-trec-genomics-2004-20230107-training', 'medline-2004-trec-genomics-2005-20230107-training', 'medline-2017-trec-pm-2017-20230211-training', 'medline-2017-trec-pm-2018-20230211-training', 'msmarco-passage-trec-dl-2019-judged-20230107-training', 'msmarco-passage-trec-dl-2020-judged-20230107-training', 'nfcorpus-test-20230107-training', 'vaswani-20230107-training', 'wapo-v2-trec-core-2018-20230107-training']

for dataset in datasets:
    output = tira.get_run_output('ir-benchmarks/tira-ir-starter/BM25 Re-Rank (tira-ir-starter-pyterrier)', dataset)

Export datasets

You can export datasets if you are the owner or if the dataset is public. Export a dataset via the cli:

tira-run --export-dataset '<task>/<tira-dataset>' --output-directory tira-dataset

Export a dataset via the python API:

from tira.rest_api_client import Client

tira = Client()
tira.download_dataset('<task>', '<tira-dataset>')

Running Jupyter Notebooks with TIRA

docker build -t tira/submission-base-image:1.0.0 -f Dockerfile .

Testing the model locally can be done using the following command:

tira-run \
  --input-directory ${PWD}/input \
  --output-directory ${PWD}/output \
  --image tira/submission-base-image:1.0.0 \
  --command 'tira-run-notebook --input $inputDataset --output $outputDir /workspace/template-notebook.ipynb'

Afterwards you can push the image to TIRA

docker push tira/submission-base-image:1.0.0

and set the command:

tira-run-notebook --input $inputDataset --output $outputDir /workspace/template-notebook.ipynb

Finally, if the actual processing in notebook is toggled via is_running_as_inference_server() (as seen in the template notebook) and your notebook defines a function named predict in the format

def predict(input_list: List) -> List:

you can start an inference server for your model with:

PORT=8001

docker run --rm -it --init \
  -v "$PWD/logs:/workspace/logs" \
  -p $PORT:$PORT \
  tira/submission-base-image:1.0.0 \
  tira-run-inference-server --notebook /workspace/template-notebook.ipynb --port $PORT

Exemplary request for a server running on localhost:8001 are

# POST (JSON list as payload)
curl -X POST -H "application/json" \
  -d "[\"element 1\", \"element 2\", \"element 3\"]" \
  localhost:8001

and

# GET (JSON object string(s) passed to the 'payload' parameter)
curl "localhost:8001?payload=\"element+1\"&payload=\"element+2\"&payload=\"element+3\""

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tira-0.0.67.tar.gz (29.7 kB view details)

Uploaded Source

Built Distribution

tira-0.0.67-py3-none-any.whl (35.3 kB view details)

Uploaded Python 3

File details

Details for the file tira-0.0.67.tar.gz.

File metadata

  • Download URL: tira-0.0.67.tar.gz
  • Upload date:
  • Size: 29.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for tira-0.0.67.tar.gz
Algorithm Hash digest
SHA256 8418b56b774616edcfaae2c14d8ca568516667845a187e04a37fe658439fbf90
MD5 29adab0b30c1352cfc86e3ddfc336aa5
BLAKE2b-256 f60dd1717136946782dc90a866445cf388d02d40d38b7c5a671738feb5cef960

See more details on using hashes here.

File details

Details for the file tira-0.0.67-py3-none-any.whl.

File metadata

  • Download URL: tira-0.0.67-py3-none-any.whl
  • Upload date:
  • Size: 35.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for tira-0.0.67-py3-none-any.whl
Algorithm Hash digest
SHA256 0917e50776918753efd9756ebe8d01ae4ea8f4ebb9b9a3e9601059e49c064726
MD5 72e1fc1c6ba9cf1b99f48cccbde18a2c
BLAKE2b-256 8ba579ebac567b87cec73f7ba78a09f3cb6a42fcba8e2452c52d1c76bd847d46

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page