Skip to main content

Simple access to the TIRA API.

Project description

The TIRA Client

This is a python client for TIRA.io.

Setup REST Client to Access Non-Public Endpoints

To access non-public endpoints, you will need an authentication via an API key to ensure that you have the correct access credentials. Please generate your API key online at tira.io/admin/api/keys and create a credentials file at ~/.tira/.tira-settings.json with the following content:

{"api_key": "<YOUR-API-KEY>"}

Download The results of some Submission

You can download runs of published and unblinded submissions via:

from tira.rest_api_client import Client

tira = Client()
output = tira.get_run_output('<task>/<team>/<approach>', '<dataset>')

As an example, you can download all baseline BM25 runs submitted to TIREx via:

from tira.rest_api_client import Client

tira = Client()
datasets = ['antique-test-20230107-training', 'argsme-touche-2020-task-1-20230209-training', 'argsme-touche-2021-task-1-20230209-training', 'clueweb09-en-trec-web-2009-20230107-training', 'clueweb09-en-trec-web-2010-20230107-training', 'clueweb09-en-trec-web-2011-20230107-training', 'clueweb09-en-trec-web-2012-20230107-training', 'clueweb12-touche-2020-task-2-20230209-training', 'clueweb12-touche-2021-task-2-20230209-training', 'clueweb12-trec-web-2013-20230107-training', 'clueweb12-trec-web-2014-20230107-training', 'cord19-fulltext-trec-covid-20230107-training', 'cranfield-20230107-training', 'disks45-nocr-trec-robust-2004-20230209-training', 'disks45-nocr-trec7-20230209-training', 'disks45-nocr-trec8-20230209-training', 'gov-trec-web-2002-20230209-training', 'gov-trec-web-2003-20230209-training', 'gov-trec-web-2004-20230209-training', 'gov2-trec-tb-2004-20230209-training', 'gov2-trec-tb-2005-20230209-training', 'gov2-trec-tb-2006-20230209-training', 'medline-2004-trec-genomics-2004-20230107-training', 'medline-2004-trec-genomics-2005-20230107-training', 'medline-2017-trec-pm-2017-20230211-training', 'medline-2017-trec-pm-2018-20230211-training', 'msmarco-passage-trec-dl-2019-judged-20230107-training', 'msmarco-passage-trec-dl-2020-judged-20230107-training', 'nfcorpus-test-20230107-training', 'vaswani-20230107-training', 'wapo-v2-trec-core-2018-20230107-training']

for dataset in datasets:
    output = tira.get_run_output('ir-benchmarks/tira-ir-starter/BM25 Re-Rank (tira-ir-starter-pyterrier)', dataset)

Export datasets

You can export datasets if you are the owner or if the dataset is public. Export a dataset via the cli:

tira-run --export-dataset '<task>/<tira-dataset>' --output-directory tira-dataset

Export a dataset via the python API:

from tira.rest_api_client import Client

tira = Client()
tira.download_dataset('<task>', '<tira-dataset>')

Running Jupyter Notebooks with TIRA

docker build -t tira/submission-base-image:1.0.0 -f Dockerfile .

Testing the model locally can be done using the following command:

tira-run \
  --input-directory ${PWD}/input \
  --output-directory ${PWD}/output \
  --image tira/submission-base-image:1.0.0 \
  --command 'tira-run-notebook --input $inputDataset --output $outputDir /workspace/template-notebook.ipynb'

Afterwards you can push the image to TIRA

docker push tira/submission-base-image:1.0.0

and set the command:

tira-run-notebook --input $inputDataset --output $outputDir /workspace/template-notebook.ipynb

Finally, if the actual processing in notebook is toggled via is_running_as_inference_server() (as seen in the template notebook) and your notebook defines a function named predict in the format

def predict(input_list: List) -> List:

you can start an inference server for your model with:

PORT=8001

docker run --rm -it --init \
  -v "$PWD/logs:/workspace/logs" \
  -p $PORT:$PORT \
  tira/submission-base-image:1.0.0 \
  tira-run-inference-server --notebook /workspace/template-notebook.ipynb --port $PORT

Exemplary request for a server running on localhost:8001 are

# POST (JSON list as payload)
curl -X POST -H "application/json" \
  -d "[\"element 1\", \"element 2\", \"element 3\"]" \
  localhost:8001

and

# GET (JSON object string(s) passed to the 'payload' parameter)
curl "localhost:8001?payload=\"element+1\"&payload=\"element+2\"&payload=\"element+3\""

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tira-0.0.68.tar.gz (29.9 kB view details)

Uploaded Source

Built Distribution

tira-0.0.68-py3-none-any.whl (35.6 kB view details)

Uploaded Python 3

File details

Details for the file tira-0.0.68.tar.gz.

File metadata

  • Download URL: tira-0.0.68.tar.gz
  • Upload date:
  • Size: 29.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for tira-0.0.68.tar.gz
Algorithm Hash digest
SHA256 b5aafae1858e1167464ef8e2834e067acdc67be643991b2f2eac158216b11b45
MD5 a6498e301049367b360f34b49771ffb6
BLAKE2b-256 0f1b7072d7a64f64a31789ea336af4a2b1f1d027b38626c5d8b40af4017983a8

See more details on using hashes here.

File details

Details for the file tira-0.0.68-py3-none-any.whl.

File metadata

  • Download URL: tira-0.0.68-py3-none-any.whl
  • Upload date:
  • Size: 35.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for tira-0.0.68-py3-none-any.whl
Algorithm Hash digest
SHA256 fc8bba41550023976a474d56d2d4c29007686b64f5336d42fc9982aa7c7144ff
MD5 f850f02c73b289cbd393cfcb7c33a01b
BLAKE2b-256 c7b46ee0065f75823fdb7f6c6e1537f8534a3a952a996a1238781ea0231d1f62

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page