Skip to main content

Simple access to the TIRA API.

Project description

The TIRA Client

This is a python client for TIRA.io.

Setup REST Client to Access Non-Public Endpoints

To access non-public endpoints, you will need an authentication via an API key to ensure that you have the correct access credentials. Please generate your API key online at tira.io/admin/api/keys and create a credentials file at ~/.tira/.tira-settings.json with the following content:

{"api_key": "<YOUR-API-KEY>"}

Download The results of some Submission

You can download runs of published and unblinded submissions via:

from tira.rest_api_client import Client

tira = Client()
output = tira.get_run_output('<task>/<team>/<approach>', '<dataset>')

As an example, you can download all baseline BM25 runs submitted to TIREx via:

from tira.rest_api_client import Client
from tira.tirex import TIREX_DATASETS

tira = Client()

for dataset in TIREX_DATASETS:
    output = tira.get_run_output('ir-benchmarks/tira-ir-starter/BM25 Re-Rank (tira-ir-starter-pyterrier)', dataset)

Overview of public submissions

As an example, you can see all public software submissions submitted to TIREx via:

from tira.rest_api_client import Client

tira = Client()
submissions = tira.all_softwares("ir-benchmarks")

Export datasets

You can export datasets if you are the owner or if the dataset is public. Export a dataset via the cli:

tira-run --export-dataset '<task>/<tira-dataset>' --output-directory tira-dataset

Export a dataset via the python API:

from tira.rest_api_client import Client

tira = Client()
tira.download_dataset('<task>', '<tira-dataset>')

Running Jupyter Notebooks with TIRA

docker build -t tira/submission-base-image:1.0.0 -f Dockerfile .

Testing the model locally can be done using the following command:

tira-run \
  --input-directory ${PWD}/input \
  --output-directory ${PWD}/output \
  --image tira/submission-base-image:1.0.0 \
  --command 'tira-run-notebook --input $inputDataset --output $outputDir /workspace/template-notebook.ipynb'

Afterwards you can push the image to TIRA

docker push tira/submission-base-image:1.0.0

and set the command:

tira-run-notebook --input $inputDataset --output $outputDir /workspace/template-notebook.ipynb

Finally, if the actual processing in notebook is toggled via is_running_as_inference_server() (as seen in the template notebook) and your notebook defines a function named predict in the format

def predict(input_list: List) -> List:

you can start an inference server for your model with:

PORT=8001

docker run --rm -it --init \
  -v "$PWD/logs:/workspace/logs" \
  -p $PORT:$PORT \
  tira/submission-base-image:1.0.0 \
  tira-run-inference-server --notebook /workspace/template-notebook.ipynb --port $PORT

Exemplary request for a server running on localhost:8001 are

# POST (JSON list as payload)
curl -X POST -H "application/json" \
  -d "[\"element 1\", \"element 2\", \"element 3\"]" \
  localhost:8001

and

# GET (JSON object string(s) passed to the 'payload' parameter)
curl "localhost:8001?payload=\"element+1\"&payload=\"element+2\"&payload=\"element+3\""

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tira-0.0.81.tar.gz (32.2 kB view details)

Uploaded Source

Built Distribution

tira-0.0.81-py3-none-any.whl (38.9 kB view details)

Uploaded Python 3

File details

Details for the file tira-0.0.81.tar.gz.

File metadata

  • Download URL: tira-0.0.81.tar.gz
  • Upload date:
  • Size: 32.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for tira-0.0.81.tar.gz
Algorithm Hash digest
SHA256 7ae0609a2e9735686bfe4f1fc66d2cb66c4b48b1eb32090a0c533854a321ef09
MD5 9621f4f2754d2befba20664234ed2979
BLAKE2b-256 de25020c2da21a0236799ac2225343612ce0689c7abfd140fd4e8021409e1087

See more details on using hashes here.

File details

Details for the file tira-0.0.81-py3-none-any.whl.

File metadata

  • Download URL: tira-0.0.81-py3-none-any.whl
  • Upload date:
  • Size: 38.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for tira-0.0.81-py3-none-any.whl
Algorithm Hash digest
SHA256 614fd34911f83d6ee74e579c08f59bcee9f7758e4903f9cfecf50d02e3f19acf
MD5 c95d2baa461251dace4a86c0a0597788
BLAKE2b-256 e8e4ebae4ad948131e5b58f4ba1c96dff6b32137ba2ec2238372803193bad766

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page