Skip to main content

Simple access to the TIRA API.

Project description

The TIRA Client

This is a python client for TIRA.io.

Setup REST Client to Access Non-Public Endpoints

To access non-public endpoints, you will need an authentication via an API key to ensure that you have the correct access credentials. Please generate your API key online at tira.io/admin/api/keys and create a credentials file at ~/.tira/.tira-settings.json with the following content:

{"api_key": "<YOUR-API-KEY>"}

Download The results of some Submission

You can download runs of published and unblinded submissions via:

from tira.rest_api_client import Client

tira = Client()
output = tira.get_run_output('<task>/<team>/<approach>', '<dataset>')

As an example, you can download all baseline BM25 runs submitted to TIREx via:

from tira.rest_api_client import Client
from tira.tirex import TIREX_DATASETS

tira = Client()

for dataset in TIREX_DATASETS:
    output = tira.get_run_output('ir-benchmarks/tira-ir-starter/BM25 Re-Rank (tira-ir-starter-pyterrier)', dataset)

Overview of public submissions

As an example, you can see all public software submissions submitted to TIREx via:

from tira.rest_api_client import Client

tira = Client()
submissions = tira.all_softwares("ir-benchmarks")

Export datasets

You can export datasets if you are the owner or if the dataset is public. Export a dataset via the cli:

tira-run --export-dataset '<task>/<tira-dataset>' --output-directory tira-dataset

Export a dataset via the python API:

from tira.rest_api_client import Client

tira = Client()
tira.download_dataset('<task>', '<tira-dataset>')

Running Jupyter Notebooks with TIRA

docker build -t tira/submission-base-image:1.0.0 -f Dockerfile .

Testing the model locally can be done using the following command:

tira-run \
  --input-directory ${PWD}/input \
  --output-directory ${PWD}/output \
  --image tira/submission-base-image:1.0.0 \
  --command 'tira-run-notebook --input $inputDataset --output $outputDir /workspace/template-notebook.ipynb'

Afterwards you can push the image to TIRA

docker push tira/submission-base-image:1.0.0

and set the command:

tira-run-notebook --input $inputDataset --output $outputDir /workspace/template-notebook.ipynb

Finally, if the actual processing in notebook is toggled via is_running_as_inference_server() (as seen in the template notebook) and your notebook defines a function named predict in the format

def predict(input_list: List) -> List:

you can start an inference server for your model with:

PORT=8001

docker run --rm -it --init \
  -v "$PWD/logs:/workspace/logs" \
  -p $PORT:$PORT \
  tira/submission-base-image:1.0.0 \
  tira-run-inference-server --notebook /workspace/template-notebook.ipynb --port $PORT

Exemplary request for a server running on localhost:8001 are

# POST (JSON list as payload)
curl -X POST -H "application/json" \
  -d "[\"element 1\", \"element 2\", \"element 3\"]" \
  localhost:8001

and

# GET (JSON object string(s) passed to the 'payload' parameter)
curl "localhost:8001?payload=\"element+1\"&payload=\"element+2\"&payload=\"element+3\""

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tira-0.0.84.tar.gz (33.6 kB view details)

Uploaded Source

Built Distribution

tira-0.0.84-py3-none-any.whl (40.7 kB view details)

Uploaded Python 3

File details

Details for the file tira-0.0.84.tar.gz.

File metadata

  • Download URL: tira-0.0.84.tar.gz
  • Upload date:
  • Size: 33.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for tira-0.0.84.tar.gz
Algorithm Hash digest
SHA256 53c45bd0af375f8ed92ba7f2ba477d18f8fb14c419d9e3e2ba999a68c2d1aa2b
MD5 23c347e18ca929c856abd80203fd3669
BLAKE2b-256 81eae114f03169422d9e6581301279f86292e43b39578f18aea6c79d08ae65e9

See more details on using hashes here.

File details

Details for the file tira-0.0.84-py3-none-any.whl.

File metadata

  • Download URL: tira-0.0.84-py3-none-any.whl
  • Upload date:
  • Size: 40.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for tira-0.0.84-py3-none-any.whl
Algorithm Hash digest
SHA256 0a644d1447a8d92f1ddca7fa919afdf2344ab0f4a8fd29110f0d386d0fd17bb7
MD5 2f759c9ac8011c065a2f54d0a2883f94
BLAKE2b-256 d3069c3d7b91bd4479557b3f8c73d890b16a81fdcabe78da3154ee8d899bff73

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page