Skip to main content

the simulation of Thurstone Item Response Theory, include fixed forced test and adaptive forced test.

Project description

the simulation of Thurstone Item Response Theory, include fixed forced test and adaptive forced test. 模拟瑟斯顿项目反应理论,包括固定测验和自适应测验。

瑟斯顿IRT模型简介和应用

瑟斯顿IRT模型主要应用于迫选式非认知测验(人格测验,动机测验,兴趣测验等)。

固定测验模拟

模拟100个被试,30个维度,每个维度10个陈述,每道题3个陈述,所以下面这个陈述总共有100题

from tirt import SimFixedTirt

fixed_tirt = SimFixedTirt(subject_nums=100, trait_size=30, items_size_per_dim=10)
theta_list = fixed_tirt.sim()
score_list = fixed_tirt.scores

for i, theta in enumerate(theta_list):
    print score_list[i]
    print theta

自适应测验模拟

模拟1个被试,题库600道题,30个维度,首先随机抽10题,第二阶段抽合适的题40道题,总共50道题

from tirt import SimAdaptiveTirt

sat = SimAdaptiveTirt(subject_nums=1, item_size=600, trait_size=30, max_sec_item_size=40)
sat.sim()

for key, value in sat.thetas.items():
    print sat.scores[key]
    print value

一致性

迫选测验通常都没有测谎量表(迫选测验本身抗作假),而衡量被试是否认真作答有更好的一致性分数

from tirt import irt_consistency_score, sim_scores, BayesProbitModel, gen_item_dict, SimFixedTirt
from tirt.utils import random_params

# 生成试题字典
item_dict = gen_item_dict(30, 10, block_size=3)
# 生成试题参数
a, b = random_params(item_dict, 30, block_size=3)
# 生成随机得分
scores = sim_scores(30, 10, 10)

for score in scores:
    model = BayesProbitModel(a, b, score=score)
    # 打印一致性
    print irt_consistency_score(model)

model = SimFixedTirt(trait_size=30, items_size_per_dim=10, subject_nums=100, model='bayes_probit')
model.sim()
print model.get_consistency_scores()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tirt-0.0.6.tar.gz (10.2 kB view details)

Uploaded Source

File details

Details for the file tirt-0.0.6.tar.gz.

File metadata

  • Download URL: tirt-0.0.6.tar.gz
  • Upload date:
  • Size: 10.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for tirt-0.0.6.tar.gz
Algorithm Hash digest
SHA256 7cd6ec9301c8b5215f983d7491ded5d27159030d85155510e4ad649356e03275
MD5 0553e31e5e712ae39132539ecf728bd2
BLAKE2b-256 c7e8789fbdff191b60943302a8a24bf99726371c78d0907a8e92cf900e7a208e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page