Skip to main content

Simple model creation and training framework for time series classification in Pytorch

Project description

tisc: pytorch-time-series-classification

PyPI version

Downloads

Downloads

Downloads

Simple model creation and training framework for time series classification in Pytorch.

What can you do with tisc?

tisc is a simple framework for time series classification in Pytorch.

  • You can create a Pytorch model for time series classification with just one function.

  • You can choose the model from many supported models.

  • You can train the model with just one method.

  • You can evaluate or predict with the trained model with just one method.

Setup

1. Install tisc

pip install tisc

2. Install Pytorch

If Pytorch is not installed to your environment, you have to install Pytorch that matches your environment from the official website: https://pytorch.org/get-started/locally/

example (this command is for my environment):

pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118

Usage

0. Prepare the dataset / dataloader

Time series data

The time series data should be a 3D tensor with the shape of (number_of_samples, timestep, dimentions).

For example, if you have a dataset with 1000 samples, each sample has 20 timesteps, and each timestep has 100 dimentions, the shape of the dataset should be (1000, 20, 100).

The label should be a 1D tensor with the shape of (number_of_samples,).

For example, if you have a dataset with 1000 samples, the shape of the label should be (1000,).

import torch



# The shape of the time series data should be (number_of_samples, timestep, dimentions)

print(train_data.shape)  # (1000, 20, 100)



# The shape of the label should be (number_of_samples,)

print(train_label.shape)  # (1000,)

Dataset

tisc supports the dataset that is a subclass of torch.utils.data.Dataset.

The dataset should return a tuple of (data, label) in the __getitem__ method.

You can use TensorDataset from torch.utils.data to create a dataset from the time series data and the label easily.

import torch

from torch.utils.data import TensorDataset



# Prepare the dataset with TensorDataset

train_dataset = TensorDataset(train_data, train_label)

val_dataset = TensorDataset(val_data, val_label)

test_dataset = TensorDataset(test_data, test_label)



# Check the type of the dataset

print(type(train_dataset))  # <class 'torch.utils.data.dataset.TensorDataset'>

Dataloader

You have to use torch.utils.data.DataLoader to load the dataset.

import torch

from torch.utils.data import DataLoader



# Prepare the dataset

train_loader = DataLoader(train_dataset, batch_size=512, shuffle=True)

val_loader = DataLoader(val_dataset, batch_size=512, shuffle=False)

test_loader = DataLoader(test_dataset, batch_size=512, shuffle=False)



# Check the type of the dataloader

print(type(train_loader))  # <class 'torch.utils.data.dataloader.DataLoader'>

1. Create a classifier

You can create a classifier with the build_classifier function.

The build_classifier function returns a tisc.Classifier object.

A Classifier object contains the model, the optimizer, the loss function, and the training and evaluation methods.

When you create a classifier, you have to pass the following arguments:

  • model_name: The name of the model. The model should be one of the supported models. (e.g., 'LSTM', 'BiLSTM', 'Transformer')

  • timestep: The number of timesteps in the time series data.

  • dimentions: The number of dimentions in each timestep.

  • num_classes: The number of classes in the dataset.

import tisc



# Create a classifier

classifier = tisc.build_classifier(model_name='LSTM',

                                   timestep=20,

                                   dimentions=100,

                                   num_classes=10)



# Check the type of the classifier

print(type(classifier))  # <class 'tisc.Classifier'>

2. Train the classifier

You can train the classifier with the train method.

The train method requires the following arguments:

  • epochs: The number of epochs to train the classifier.

  • train_loader: The dataloader for the training dataset.

you can pass val_loader to train the classifier with validation.

classifier.train(train_loader, epochs=100)



# If the `val_loader` argument is passed, you can train the classifier with validation.

classifier.train(train_loader, val_loader=val_loader, epochs=100)

3. Evaluate the classifier

You can evaluate the classifier with the evaluate method.

The evaluate method requires the following arguments:

  • test_loader: The dataloader for the test dataset.

The evaluate method can return the classification report and the confusion matrix if you pass the return_report and return_confusion_matrix arguments as True.

If with_best_model argument is True, the classifier will use the best model that marked the best result about the model saving strategy.

classifier.evaluate(test_loader,

                    return_report=True,

                    return_confusion_matrix=True,

                    with_best_model=True)

Supported models

The models that can be used in version 0.1.0:

  • LSTM

  • BiLSTM

  • Transformer

and more! (More models will be added.)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tisc-0.1.1.tar.gz (17.1 kB view details)

Uploaded Source

Built Distribution

tisc-0.1.1-py3-none-any.whl (17.0 kB view details)

Uploaded Python 3

File details

Details for the file tisc-0.1.1.tar.gz.

File metadata

  • Download URL: tisc-0.1.1.tar.gz
  • Upload date:
  • Size: 17.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.2

File hashes

Hashes for tisc-0.1.1.tar.gz
Algorithm Hash digest
SHA256 8a8d884bb916a100b86bf8034d176c595629ce4739fce94c5543f42b479fb601
MD5 e9fb653c5395783e1dff1a770ffa2596
BLAKE2b-256 61f51cd27265dc92780d09426a2d420b4fc9be931d91da4ee8c93a5030a57e57

See more details on using hashes here.

File details

Details for the file tisc-0.1.1-py3-none-any.whl.

File metadata

  • Download URL: tisc-0.1.1-py3-none-any.whl
  • Upload date:
  • Size: 17.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.2

File hashes

Hashes for tisc-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 bf58b917a7f8b8fa570f6a35fa74d358c40d63b62db0f2490ed7e8fd1b300d36
MD5 d84950ac195fd587d87f269e261013bd
BLAKE2b-256 b14c65de202a982db63c0fae7bf85606ac05222bfd764ef2170c1836bde0ad4c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page