Translation Initiation Variation
Project description
TIVar
Translation Initiation Variation
Predict translation initiation (TI) efficiency for potential start codons, based on the context sequence near the start codon. Given SNP/Indel variation, this tools can predict changes of TI efficiencies between ref and alt alleles.
INSTALL
Python version >= 3.4.
Requirements
Install from source
git clone https://github.com/zhpn1024/TIVar
python setup.py install
or
python setup.py install --user
Usage
predict
This module can and calculate TI efficiency scores from given sequences.
Fasta sequence file as input:
tivar predict -S test1.fa -o out1.txt
Provide sequence in the parameter:
tivar predict -s aaaaaacaaaaaaaTGTACAATGGATGCATTGAAATTATATGTAATTGTATAAATGGTGCAACA -o out1.txt
Provide transcript annotation and genome sequence:
tivar predict -g hg38_gc31.gtf.gz -f hg38.fa -o out1.txt
The output is like:
SeqID | Pos | StartSeq | EffScore |
---|---|---|---|
Seq | 13 | aacaaaaaa-aTG-TACA | 0.08535 |
Seq | 20 | aaaTGTACA-ATG-GATG | 0.34153 |
diff
This module predict TI changes caused by sequence variation.
tivar diff -i test.vcf -g hg38_gc31.gtf.gz -f hg38.fa -o out2.txt
The output is like:
Gid | Tid | Var | GenoPos | Strand | Pos | RefSeq | AltSeq | EffeRef | EffeAlt | Diff | FC | Type |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ENSG00000134262.13 | ENST00000369569.6 | chr1:113895309:A>AC | 113895310 | - | 2056 | ACCCTCCAG-ATG-GCTC | ACCCTCCAG-AGT-GGCT | 0.31412 | 0.0 | -0.3141 | 0.0 | TI_decreased |
ENSG00000134262.13 | ENST00000369569.6 | chr1:113895309:A>AC | 113895310 | - | 2056 | ACCCTCCAG-ATG-GCTC | CCCTCCAGA-GTG-GCTC | 0.31412 | 0.04335 | -0.2708 | 0.138 | TI_decreased |
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distribution
File details
Details for the file tivar-0.1.0-py3-none-any.whl
.
File metadata
- Download URL: tivar-0.1.0-py3-none-any.whl
- Upload date:
- Size: 105.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.7.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c82d9bcbe3a5e40904b454089ac5691a99ad184c09552c264eb53237f6ec462e |
|
MD5 | b3ad98184d773a3ea95b224690a2574f |
|
BLAKE2b-256 | 70f5c89dc26ddb56c0bbe9a6242c01cd38d356654bd6e6d4b4ee46f4c6218a9a |