Terry toolkit tkitAutoMask,
Project description
tkitAutoMask
自动构建掩码 加入多种动态掩码合集,上下三角和动态片段,以及默认的概率
pip install tkitAutoMask
from tkitAutoMask import autoMask
from transformers import BertTokenizer
tokenizer = BertTokenizer.from_pretrained("uer/chinese_roberta_L-2_H-128")
# dir(tokenizer)
tomask = autoMask(
# transformer,
mask_token_id = tokenizer.mask_token_id, # the token id reserved for masking
pad_token_id = tokenizer.pad_token_id, # the token id for padding
mask_prob = 0.05, # masking probability for masked language modeling
replace_prob = 0.90, # ~10% probability that token will not be masked, but included in loss, as detailed in the epaper
mask_ignore_token_ids = [tokenizer.cls_token_id,tokenizer.eos_token_id] # other tokens to exclude from masking, include the [cls] and [sep] here
)
x=torch.ones(5,5)
for i in range(100):
a,b=tomask(x)
# a,b
print(b)
tensor([[1., 1., 1., 0., 1.],
[0., 1., 1., 1., 0.],
[0., 0., 1., 1., 1.],
[0., 0., 0., 1., 1.],
[0., 1., 0., 0., 1.]])
tensor([[1., 1., 0., 0., 0.],
[0., 1., 1., 0., 0.],
[1., 0., 1., 1., 0.],
[0., 1., 0., 1., 1.],
[0., 0., 0., 0., 1.]])
tensor([[1., 1., 1., 0., 1.],
[0., 1., 1., 1., 0.],
[0., 1., 1., 1., 1.],
[1., 0., 0., 1., 1.],
[0., 0., 0., 1., 1.]])
tensor([[0., 0., 1., 0., 0.],
[0., 0., 1., 0., 0.],
[0., 0., 0., 1., 0.],
[0., 1., 0., 0., 0.],
[0., 1., 0., 0., 0.]])
tensor([[1., 1., 1., 0., 0.],
[0., 1., 1., 1., 0.],
[1., 0., 1., 1., 1.],
[0., 1., 0., 1., 1.],
[0., 0., 0., 1., 1.]])
tensor([[0., 0., 0., 1., 0.],
[0., 1., 0., 0., 0.],
[0., 1., 0., 0., 0.],
[0., 0., 0., 1., 0.],
[0., 0., 1., 0., 0.]])
tensor([[0., 0., 0., 1., 0.],
[0., 0., 0., 0., 1.],
[1., 0., 0., 0., 1.],
[1., 1., 0., 0., 0.],
[1., 1., 1., 0., 1.]])
tensor([[1., 0., 0., 0., 0.],
[0., 0., 0., 1., 0.],
[1., 0., 0., 0., 0.],
[1., 1., 0., 0., 0.],
[1., 1., 1., 0., 0.]])
其他测试
https://colab.research.google.com/drive/1CvkoJ1pZQDRWGPA-5IzJufvocBM-RVT2#scrollTo=UwkociF5ZF-d
详细参考
dev.md
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file tkitAutoMask-0.0.0.116347453.tar.gz
.
File metadata
- Download URL: tkitAutoMask-0.0.0.116347453.tar.gz
- Upload date:
- Size: 9.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | daf7e88fbdc83b3c7d359f8fe76c445c298e2823950ce3a7c4bb83c6b98a4509 |
|
MD5 | d86cbb51319d3283c8d078024725fffa |
|
BLAKE2b-256 | ee2414d2bcb6b66c756a9306b170c395406d5dbac219b0fc9865ac061e400981 |
File details
Details for the file tkitAutoMask-0.0.0.116347453-py3-none-any.whl
.
File metadata
- Download URL: tkitAutoMask-0.0.0.116347453-py3-none-any.whl
- Upload date:
- Size: 9.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 852dbddc4ac102c176ab7b69d7b3e03b969e7f27e149095dd4e39615f14eef86 |
|
MD5 | 6050164a2baf9bff9fc3344cdcc7ed5b |
|
BLAKE2b-256 | 260b67f65d1d1d1cf206108ad68025ec98938d531dbaf8569622aba7d81117ad |