Terry toolkit tkitAutoMask,
Project description
tkitAutoMask
自动构建掩码 加入多种动态掩码合集,上下三角和动态片段,以及默认的概率
-上三角,实现类似从左到右的预测,就是单向注意,用于续写。
- 片段,连续多个mask,更加适合解决补全。
未来尝试加入 模板预测掩码
pip install tkitAutoMask
from tkitAutoMask import autoMask
from transformers import BertTokenizer
tokenizer = BertTokenizer.from_pretrained("uer/chinese_roberta_L-2_H-128")
# dir(tokenizer)
tomask = autoMask(
# transformer,
mask_token_id = tokenizer.mask_token_id, # the token id reserved for masking
pad_token_id = -100, # the token id for padding
mask_prob = 0.05, # 仅仅是常规的掩码比例 masking probability for masked language modeling
replace_prob = 0.90, # ~10% probability that token will not be masked, but included in loss, as detailed in the epaper
mask_ignore_token_ids = [tokenizer.cls_token_id,tokenizer.eos_token_id] # other tokens to exclude from masking, include the [cls] and [sep] here
)
# x=torch.ones(5,5)
x = torch.randint(0, 20000, (10, 10))
for i in range(10):
a,b=tomask(x)
# a,b
print(b)
labels:形状为[batch_size, seq_length] ,代表MLM任务的标签,注意这里对于原本未被遮盖的词设置为-100,被遮盖词才会有它们对应的id,和任务设置是反过来的。 例如,原始句子是I want to [MASK] an apple,这里我把单词eat给遮住了输入模型,对应的label设置为[-100, -100, -100, 【eat对应的id】, -100, -100]; 为什么要设置为-100而不是其他数? 因为torch.nn.CrossEntropyLoss默认的ignore_index=-100,也就是说对于标签为100的类别输入不会计算loss。
tensor([[ -100, -100, -100, -100, -100, -100, -100, -100, 6238, -100],
[ -100, -100, -100, -100, -100, -100, -100, 7321, -100, -100],
[ -100, -100, -100, -100, -100, -100, -100, -100, 11728, -100],
[ -100, -100, -100, -100, -100, -100, 3641, -100, -100, -100],
[ -100, -100, -100, -100, -100, 14913, -100, -100, -100, -100],
[ -100, 8332, -100, -100, -100, -100, -100, -100, -100, -100],
[ -100, -100, -100, -100, -100, -100, -100, -100, 11952, -100],
[ -100, -100, -100, -100, 12768, -100, -100, -100, -100, -100],
[ -100, -100, -100, -100, -100, -100, -100, -100, -100, 77],
[ -100, -100, 16031, -100, -100, -100, -100, -100, -100, -100]])
tensor([[ -100, -100, 1312, -100, -100, -100, -100, -100, -100, -100],
[ -100, -100, -100, -100, -100, -100, -100, -100, -100, 7849],
[ 9007, -100, -100, -100, -100, -100, -100, -100, -100, -100],
[ -100, -100, -100, -100, -100, -100, -100, -100, -100, 1822],
[ -100, -100, -100, -100, -100, -100, -100, -100, -100, 17593],
[ -100, -100, -100, -100, -100, -100, -100, 13736, -100, -100],
[ -100, -100, -100, 16620, -100, -100, -100, -100, -100, -100],
[ -100, -100, -100, -100, -100, -100, -100, 18083, -100, -100],
[ -100, -100, -100, 15338, -100, -100, -100, -100, -100, -100],
[ -100, -100, -100, 12984, -100, -100, -100, -100, -100, -100]])
tensor([[ -100, -100, -100, -100, -100, -100, -100, -100, -100, 4867],
[ -100, 15820, -100, -100, -100, -100, -100, -100, -100, -100],
[ 9007, 1684, -100, -100, -100, -100, -100, -100, -100, -100],
[ 4373, 13507, -100, -100, -100, -100, -100, 19849, -100, -100],
[19143, 19690, 16235, -100, -100, 14913, -100, -100, -100, -100],
[18837, 8332, 13231, 16312, -100, -100, 8517, -100, -100, -100],
[ 1567, 928, 268, 16620, 16337, 2932, -100, -100, -100, -100],
[ 9537, 1362, 16203, 10865, 12768, 10351, -100, -100, -100, 4658],
[12488, 17234, 4130, 15338, 4766, 6458, 15765, -100, -100, -100],
[19972, 457, 16031, 12984, 14118, 4127, 13889, 13456, -100, -100]])
tensor([[ 2649, 3837, 1312, 12421, 15558, -100, -100, -100, -100, -100],
[ -100, 15820, 2654, 3647, 13259, 6178, -100, -100, -100, 7849],
[ 9007, -100, 17864, 360, 4748, 10698, 3624, -100, -100, -100],
[ -100, 13507, -100, 5198, 4845, 18414, 3641, 19849, -100, -100],
[ -100, -100, -100, 17247, 7694, 14913, 4696, 3476, 7539, -100],
[ -100, -100, -100, -100, -100, 5739, 8517, 13736, 8122, 16682],
[ -100, -100, -100, -100, 16337, -100, 12610, 6181, 11952, 4669],
[ -100, -100, -100, -100, -100, -100, -100, 18083, 14632, 4658],
[ -100, -100, -100, 15338, -100, -100, -100, -100, 10558, 77],
[ -100, -100, 16031, -100, -100, -100, -100, -100, -100, 12816]])
tensor([[ -100, -100, -100, -100, 15558, -100, -100, -100, -100, -100],
[ -100, 15820, -100, -100, -100, -100, -100, -100, -100, -100],
[ -100, -100, 17864, -100, -100, -100, -100, -100, -100, -100],
[ -100, -100, -100, -100, 4845, -100, -100, -100, -100, -100],
[ -100, -100, -100, -100, 7694, -100, -100, -100, -100, -100],
[ -100, -100, -100, 16312, -100, -100, -100, -100, -100, -100],
[ -100, -100, -100, -100, -100, -100, 12610, -100, -100, -100],
[ -100, -100, -100, -100, -100, -100, -100, -100, -100, 4658],
[12488, -100, -100, -100, -100, -100, -100, -100, -100, -100],
[ -100, -100, -100, -100, -100, -100, -100, 13456, -100, -100]])
tensor([[ -100, -100, -100, -100, -100, -100, -100, -100, -100, 4867],
[ -100, -100, 2654, -100, -100, -100, -100, -100, -100, -100],
[ 9007, -100, -100, -100, -100, -100, -100, -100, -100, -100],
[ -100, -100, -100, -100, -100, -100, 3641, -100, -100, -100],
[ -100, -100, -100, -100, -100, 14913, -100, -100, -100, -100],
[ -100, -100, 13231, -100, -100, -100, -100, -100, -100, -100],
[ -100, -100, 268, -100, -100, -100, -100, -100, -100, -100],
[ -100, -100, -100, -100, -100, -100, -100, -100, 14632, -100],
[ -100, -100, -100, -100, -100, -100, 15765, -100, -100, -100],
[ -100, -100, -100, -100, 14118, -100, -100, -100, -100, -100]])
tensor([[ -100, -100, -100, -100, -100, -100, 7519, -100, -100, -100],
[15670, -100, -100, -100, -100, -100, -100, -100, -100, -100],
[ -100, 1684, -100, -100, -100, -100, -100, -100, -100, -100],
[ -100, -100, -100, -100, -100, -100, -100, -100, -100, 1822],
[ -100, 19690, -100, -100, -100, -100, -100, -100, -100, -100],
[ -100, -100, 13231, -100, -100, -100, -100, -100, -100, -100],
[ -100, -100, -100, -100, -100, -100, -100, -100, -100, 4669],
[ -100, -100, -100, -100, -100, -100, -100, -100, -100, 4658],
[12488, -100, -100, -100, -100, -100, -100, -100, -100, -100],
[ -100, -100, 16031, -100, -100, -100, -100, -100, -100, -100]])
tensor([[ 2649, 3837, 1312, -100, -100, 976, -100, -100, -100, -100],
[ -100, 15820, 2654, 3647, -100, -100, -100, -100, -100, -100],
[ -100, -100, 17864, 360, 4748, -100, 3624, -100, -100, -100],
[ 4373, -100, -100, 5198, 4845, 18414, -100, -100, -100, -100],
[ -100, -100, -100, -100, 7694, 14913, 4696, -100, 7539, -100],
[ -100, -100, -100, -100, -100, 5739, 8517, 13736, -100, -100],
[ -100, 928, -100, -100, -100, -100, 12610, 6181, 11952, -100],
[ -100, -100, -100, -100, -100, -100, -100, 18083, 14632, 4658],
[ -100, -100, -100, -100, -100, -100, -100, 19026, 10558, 77],
[ -100, 457, -100, -100, -100, -100, -100, -100, -100, 12816]])
tensor([[ -100, -100, -100, -100, -100, -100, 7519, -100, -100, -100],
[ -100, -100, 2654, -100, -100, -100, -100, -100, -100, -100],
[ -100, -100, -100, -100, 4748, -100, -100, -100, -100, -100],
[ -100, -100, -100, -100, -100, -100, -100, -100, 7381, -100],
[ -100, -100, -100, -100, -100, -100, -100, -100, 7539, -100],
[ -100, -100, -100, -100, -100, -100, -100, -100, 8122, -100],
[ -100, -100, -100, -100, -100, -100, 12610, -100, -100, -100],
[ -100, -100, 16203, -100, -100, -100, -100, -100, -100, -100],
[ -100, -100, -100, -100, -100, 6458, -100, -100, -100, -100],
[ -100, -100, -100, -100, -100, 4127, -100, -100, -100, -100]])
tensor([[ -100, -100, -100, -100, -100, -100, -100, -100, 6238, -100],
[ -100, -100, -100, -100, -100, -100, -100, -100, -100, 7849],
[ -100, -100, -100, -100, 4748, -100, -100, -100, -100, -100],
[ -100, -100, -100, -100, -100, 18414, -100, -100, -100, -100],
[ -100, -100, -100, -100, -100, 14913, -100, -100, -100, -100],
[ -100, -100, -100, 16312, -100, -100, -100, -100, -100, -100],
[ -100, 928, -100, -100, -100, -100, -100, -100, -100, -100],
[ -100, -100, -100, -100, -100, -100, 19242, -100, -100, -100],
[ -100, -100, -100, -100, -100, 6458, -100, -100, -100, -100],
[ -100, -100, -100, -100, -100, 4127, -100, -100, -100, -100]])
其他测试
https://colab.research.google.com/drive/1CvkoJ1pZQDRWGPA-5IzJufvocBM-RVT2#scrollTo=UwkociF5ZF-d
https://colab.research.google.com/drive/1kNHD0I0wH3WBpJXPdgZqs0MZTRnGD-ok#scrollTo=6M1ZXRsuxZAa
unilm_mask注意力写法 https://colab.research.google.com/drive/11IDalP2xNYWzF4gIz6T3yTjp53UqzkOe#scrollTo=gFeycxpykrCx
详细参考
dev.md
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file tkitAutoMask-0.0.0.316483598.tar.gz
.
File metadata
- Download URL: tkitAutoMask-0.0.0.316483598.tar.gz
- Upload date:
- Size: 16.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.1 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b0bbfcb00d8b47b89a6af4789e69e5d682804f481d8bc052866742357004723b |
|
MD5 | d07d65a1943727df81380cb00bb2dc59 |
|
BLAKE2b-256 | d73e8ccd85789e5f675634b256069a9edc406976d939d304cc0710b232d42866 |
File details
Details for the file tkitAutoMask-0.0.0.316483598-py3-none-any.whl
.
File metadata
- Download URL: tkitAutoMask-0.0.0.316483598-py3-none-any.whl
- Upload date:
- Size: 14.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.1 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 41a3afa3273f45979b1b5df30e2b21577c390835a2a156f5e20118ee4f592e91 |
|
MD5 | 627618db1ba999c77f29e34822cce6e9 |
|
BLAKE2b-256 | 28123b41a242c50f913819be8ccfa282171dc87ee7f36d1c957a355e327026d2 |