Skip to main content

Terry toolkit tkitAutoMask,

Project description

tkitAutoMask

自动构建掩码 加入多种动态掩码合集,上下三角和动态片段,以及默认的概率

-上三角,实现类似从左到右的预测,就是单向注意,用于续写。

  • 片段,连续多个mask,更加适合解决补全。

未来尝试加入 模板预测掩码

pip install tkitAutoMask


from tkitAutoMask import autoMask
from transformers import BertTokenizer
tokenizer = BertTokenizer.from_pretrained("uer/chinese_roberta_L-2_H-128") 
# dir(tokenizer)
tomask = autoMask(
    # transformer,
    mask_token_id = tokenizer.mask_token_id,          # the token id reserved for masking
    pad_token_id = -100,           # the token id for padding
    mask_prob = 0.05,           # 仅仅是常规的掩码比例 masking probability for masked language modeling
    replace_prob = 0.90,        # ~10% probability that token will not be masked, but included in loss, as detailed in the epaper
    mask_ignore_token_ids = [tokenizer.cls_token_id,tokenizer.eos_token_id]  # other tokens to exclude from masking, include the [cls] and [sep] here
)


# x=torch.ones(5,5)
x = torch.randint(0, 20000, (10, 10))
for i in range(10):
  a,b=tomask(x)
  # a,b
  print(b)

labels:形状为[batch_size, seq_length] ,代表MLM任务的标签,注意这里对于原本未被遮盖的词设置为-100,被遮盖词才会有它们对应的id,和任务设置是反过来的。 例如,原始句子是I want to [MASK] an apple,这里我把单词eat给遮住了输入模型,对应的label设置为[-100, -100, -100, 【eat对应的id】, -100, -100]; 为什么要设置为-100而不是其他数? 因为torch.nn.CrossEntropyLoss默认的ignore_index=-100,也就是说对于标签为100的类别输入不会计算loss。

tensor([[ -100,  -100,  -100,  -100,  -100,  -100,  -100,  -100,  6238,  -100],
        [ -100,  -100,  -100,  -100,  -100,  -100,  -100,  7321,  -100,  -100],
        [ -100,  -100,  -100,  -100,  -100,  -100,  -100,  -100, 11728,  -100],
        [ -100,  -100,  -100,  -100,  -100,  -100,  3641,  -100,  -100,  -100],
        [ -100,  -100,  -100,  -100,  -100, 14913,  -100,  -100,  -100,  -100],
        [ -100,  8332,  -100,  -100,  -100,  -100,  -100,  -100,  -100,  -100],
        [ -100,  -100,  -100,  -100,  -100,  -100,  -100,  -100, 11952,  -100],
        [ -100,  -100,  -100,  -100, 12768,  -100,  -100,  -100,  -100,  -100],
        [ -100,  -100,  -100,  -100,  -100,  -100,  -100,  -100,  -100,    77],
        [ -100,  -100, 16031,  -100,  -100,  -100,  -100,  -100,  -100,  -100]])
tensor([[ -100,  -100,  1312,  -100,  -100,  -100,  -100,  -100,  -100,  -100],
        [ -100,  -100,  -100,  -100,  -100,  -100,  -100,  -100,  -100,  7849],
        [ 9007,  -100,  -100,  -100,  -100,  -100,  -100,  -100,  -100,  -100],
        [ -100,  -100,  -100,  -100,  -100,  -100,  -100,  -100,  -100,  1822],
        [ -100,  -100,  -100,  -100,  -100,  -100,  -100,  -100,  -100, 17593],
        [ -100,  -100,  -100,  -100,  -100,  -100,  -100, 13736,  -100,  -100],
        [ -100,  -100,  -100, 16620,  -100,  -100,  -100,  -100,  -100,  -100],
        [ -100,  -100,  -100,  -100,  -100,  -100,  -100, 18083,  -100,  -100],
        [ -100,  -100,  -100, 15338,  -100,  -100,  -100,  -100,  -100,  -100],
        [ -100,  -100,  -100, 12984,  -100,  -100,  -100,  -100,  -100,  -100]])
tensor([[ -100,  -100,  -100,  -100,  -100,  -100,  -100,  -100,  -100,  4867],
        [ -100, 15820,  -100,  -100,  -100,  -100,  -100,  -100,  -100,  -100],
        [ 9007,  1684,  -100,  -100,  -100,  -100,  -100,  -100,  -100,  -100],
        [ 4373, 13507,  -100,  -100,  -100,  -100,  -100, 19849,  -100,  -100],
        [19143, 19690, 16235,  -100,  -100, 14913,  -100,  -100,  -100,  -100],
        [18837,  8332, 13231, 16312,  -100,  -100,  8517,  -100,  -100,  -100],
        [ 1567,   928,   268, 16620, 16337,  2932,  -100,  -100,  -100,  -100],
        [ 9537,  1362, 16203, 10865, 12768, 10351,  -100,  -100,  -100,  4658],
        [12488, 17234,  4130, 15338,  4766,  6458, 15765,  -100,  -100,  -100],
        [19972,   457, 16031, 12984, 14118,  4127, 13889, 13456,  -100,  -100]])
tensor([[ 2649,  3837,  1312, 12421, 15558,  -100,  -100,  -100,  -100,  -100],
        [ -100, 15820,  2654,  3647, 13259,  6178,  -100,  -100,  -100,  7849],
        [ 9007,  -100, 17864,   360,  4748, 10698,  3624,  -100,  -100,  -100],
        [ -100, 13507,  -100,  5198,  4845, 18414,  3641, 19849,  -100,  -100],
        [ -100,  -100,  -100, 17247,  7694, 14913,  4696,  3476,  7539,  -100],
        [ -100,  -100,  -100,  -100,  -100,  5739,  8517, 13736,  8122, 16682],
        [ -100,  -100,  -100,  -100, 16337,  -100, 12610,  6181, 11952,  4669],
        [ -100,  -100,  -100,  -100,  -100,  -100,  -100, 18083, 14632,  4658],
        [ -100,  -100,  -100, 15338,  -100,  -100,  -100,  -100, 10558,    77],
        [ -100,  -100, 16031,  -100,  -100,  -100,  -100,  -100,  -100, 12816]])
tensor([[ -100,  -100,  -100,  -100, 15558,  -100,  -100,  -100,  -100,  -100],
        [ -100, 15820,  -100,  -100,  -100,  -100,  -100,  -100,  -100,  -100],
        [ -100,  -100, 17864,  -100,  -100,  -100,  -100,  -100,  -100,  -100],
        [ -100,  -100,  -100,  -100,  4845,  -100,  -100,  -100,  -100,  -100],
        [ -100,  -100,  -100,  -100,  7694,  -100,  -100,  -100,  -100,  -100],
        [ -100,  -100,  -100, 16312,  -100,  -100,  -100,  -100,  -100,  -100],
        [ -100,  -100,  -100,  -100,  -100,  -100, 12610,  -100,  -100,  -100],
        [ -100,  -100,  -100,  -100,  -100,  -100,  -100,  -100,  -100,  4658],
        [12488,  -100,  -100,  -100,  -100,  -100,  -100,  -100,  -100,  -100],
        [ -100,  -100,  -100,  -100,  -100,  -100,  -100, 13456,  -100,  -100]])
tensor([[ -100,  -100,  -100,  -100,  -100,  -100,  -100,  -100,  -100,  4867],
        [ -100,  -100,  2654,  -100,  -100,  -100,  -100,  -100,  -100,  -100],
        [ 9007,  -100,  -100,  -100,  -100,  -100,  -100,  -100,  -100,  -100],
        [ -100,  -100,  -100,  -100,  -100,  -100,  3641,  -100,  -100,  -100],
        [ -100,  -100,  -100,  -100,  -100, 14913,  -100,  -100,  -100,  -100],
        [ -100,  -100, 13231,  -100,  -100,  -100,  -100,  -100,  -100,  -100],
        [ -100,  -100,   268,  -100,  -100,  -100,  -100,  -100,  -100,  -100],
        [ -100,  -100,  -100,  -100,  -100,  -100,  -100,  -100, 14632,  -100],
        [ -100,  -100,  -100,  -100,  -100,  -100, 15765,  -100,  -100,  -100],
        [ -100,  -100,  -100,  -100, 14118,  -100,  -100,  -100,  -100,  -100]])
tensor([[ -100,  -100,  -100,  -100,  -100,  -100,  7519,  -100,  -100,  -100],
        [15670,  -100,  -100,  -100,  -100,  -100,  -100,  -100,  -100,  -100],
        [ -100,  1684,  -100,  -100,  -100,  -100,  -100,  -100,  -100,  -100],
        [ -100,  -100,  -100,  -100,  -100,  -100,  -100,  -100,  -100,  1822],
        [ -100, 19690,  -100,  -100,  -100,  -100,  -100,  -100,  -100,  -100],
        [ -100,  -100, 13231,  -100,  -100,  -100,  -100,  -100,  -100,  -100],
        [ -100,  -100,  -100,  -100,  -100,  -100,  -100,  -100,  -100,  4669],
        [ -100,  -100,  -100,  -100,  -100,  -100,  -100,  -100,  -100,  4658],
        [12488,  -100,  -100,  -100,  -100,  -100,  -100,  -100,  -100,  -100],
        [ -100,  -100, 16031,  -100,  -100,  -100,  -100,  -100,  -100,  -100]])
tensor([[ 2649,  3837,  1312,  -100,  -100,   976,  -100,  -100,  -100,  -100],
        [ -100, 15820,  2654,  3647,  -100,  -100,  -100,  -100,  -100,  -100],
        [ -100,  -100, 17864,   360,  4748,  -100,  3624,  -100,  -100,  -100],
        [ 4373,  -100,  -100,  5198,  4845, 18414,  -100,  -100,  -100,  -100],
        [ -100,  -100,  -100,  -100,  7694, 14913,  4696,  -100,  7539,  -100],
        [ -100,  -100,  -100,  -100,  -100,  5739,  8517, 13736,  -100,  -100],
        [ -100,   928,  -100,  -100,  -100,  -100, 12610,  6181, 11952,  -100],
        [ -100,  -100,  -100,  -100,  -100,  -100,  -100, 18083, 14632,  4658],
        [ -100,  -100,  -100,  -100,  -100,  -100,  -100, 19026, 10558,    77],
        [ -100,   457,  -100,  -100,  -100,  -100,  -100,  -100,  -100, 12816]])
tensor([[ -100,  -100,  -100,  -100,  -100,  -100,  7519,  -100,  -100,  -100],
        [ -100,  -100,  2654,  -100,  -100,  -100,  -100,  -100,  -100,  -100],
        [ -100,  -100,  -100,  -100,  4748,  -100,  -100,  -100,  -100,  -100],
        [ -100,  -100,  -100,  -100,  -100,  -100,  -100,  -100,  7381,  -100],
        [ -100,  -100,  -100,  -100,  -100,  -100,  -100,  -100,  7539,  -100],
        [ -100,  -100,  -100,  -100,  -100,  -100,  -100,  -100,  8122,  -100],
        [ -100,  -100,  -100,  -100,  -100,  -100, 12610,  -100,  -100,  -100],
        [ -100,  -100, 16203,  -100,  -100,  -100,  -100,  -100,  -100,  -100],
        [ -100,  -100,  -100,  -100,  -100,  6458,  -100,  -100,  -100,  -100],
        [ -100,  -100,  -100,  -100,  -100,  4127,  -100,  -100,  -100,  -100]])
tensor([[ -100,  -100,  -100,  -100,  -100,  -100,  -100,  -100,  6238,  -100],
        [ -100,  -100,  -100,  -100,  -100,  -100,  -100,  -100,  -100,  7849],
        [ -100,  -100,  -100,  -100,  4748,  -100,  -100,  -100,  -100,  -100],
        [ -100,  -100,  -100,  -100,  -100, 18414,  -100,  -100,  -100,  -100],
        [ -100,  -100,  -100,  -100,  -100, 14913,  -100,  -100,  -100,  -100],
        [ -100,  -100,  -100, 16312,  -100,  -100,  -100,  -100,  -100,  -100],
        [ -100,   928,  -100,  -100,  -100,  -100,  -100,  -100,  -100,  -100],
        [ -100,  -100,  -100,  -100,  -100,  -100, 19242,  -100,  -100,  -100],
        [ -100,  -100,  -100,  -100,  -100,  6458,  -100,  -100,  -100,  -100],
        [ -100,  -100,  -100,  -100,  -100,  4127,  -100,  -100,  -100,  -100]])

其他测试

https://colab.research.google.com/drive/1CvkoJ1pZQDRWGPA-5IzJufvocBM-RVT2#scrollTo=UwkociF5ZF-d

https://colab.research.google.com/drive/1kNHD0I0wH3WBpJXPdgZqs0MZTRnGD-ok#scrollTo=6M1ZXRsuxZAa

unilm_mask注意力写法 https://colab.research.google.com/drive/11IDalP2xNYWzF4gIz6T3yTjp53UqzkOe#scrollTo=gFeycxpykrCx

详细参考

dev.md

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tkitAutoMask-0.0.0.316483919.tar.gz (16.5 kB view details)

Uploaded Source

Built Distribution

tkitAutoMask-0.0.0.316483919-py3-none-any.whl (14.3 kB view details)

Uploaded Python 3

File details

Details for the file tkitAutoMask-0.0.0.316483919.tar.gz.

File metadata

  • Download URL: tkitAutoMask-0.0.0.316483919.tar.gz
  • Upload date:
  • Size: 16.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.1 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.12

File hashes

Hashes for tkitAutoMask-0.0.0.316483919.tar.gz
Algorithm Hash digest
SHA256 d98e1afe02f1e97518536f292fb7f72662c69f72ffe8adfe5a668ff05ae85fe2
MD5 9f4d20c065e8f93a6fa77ce44cf1921b
BLAKE2b-256 f8ad1d335384d18513d2d74e7cae93f777c333699241b1beb12ec81df60f7a21

See more details on using hashes here.

File details

Details for the file tkitAutoMask-0.0.0.316483919-py3-none-any.whl.

File metadata

  • Download URL: tkitAutoMask-0.0.0.316483919-py3-none-any.whl
  • Upload date:
  • Size: 14.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.1 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.12

File hashes

Hashes for tkitAutoMask-0.0.0.316483919-py3-none-any.whl
Algorithm Hash digest
SHA256 dc21c2374c5cfae10f67f6185664d41fbcd27b59abcfa034427ec0a485e1d1de
MD5 6b6dfcc4394f22588ecc0693091c34a8
BLAKE2b-256 606c7ffa76411ff989f279e12dac9f406e7cb9d2727cc4d2c1c2656a951fb805

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page