A python library for neural network transfer learning.
Project description
About
We provide a set of transfer learning-based model training and evaluation functions. ImageNet pretrained weights are used.
The series of Efficient Net models are supported.
There is always a trade-off between model size and accuracy. Our guideline is as follows:
For tfjs apps, use EfficientNetB0 or EfficientNetB1; For tf-lite apps, use EfficientNetB2 ~ B4; For desktop apps, use EfficientNetB5 and above.
The following table is from keras website:
Model | Size (MB) | Top-1 Accuracy | Top-5 Accuracy | Parameters | Depth | Time (ms) per inference step (CPU) | Time (ms) per inference step (GPU) |
---|---|---|---|---|---|---|---|
Xception | 88 | 79.0% | 94.5% | 22.9M | 81 | 109.4 | 8.1 |
VGG16 | 528 | 71.3% | 90.1% | 138.4M | 16 | 69.5 | 4.2 |
VGG19 | 549 | 71.3% | 90.0% | 143.7M | 19 | 84.8 | 4.4 |
ResNet50 | 98 | 74.9% | 92.1% | 25.6M | 107 | 58.2 | 4.6 |
ResNet50V2 | 98 | 76.0% | 93.0% | 25.6M | 103 | 45.6 | 4.4 |
ResNet101 | 171 | 76.4% | 92.8% | 44.7M | 209 | 89.6 | 5.2 |
ResNet101V2 | 171 | 77.2% | 93.8% | 44.7M | 205 | 72.7 | 5.4 |
ResNet152 | 232 | 76.6% | 93.1% | 60.4M | 311 | 127.4 | 6.5 |
ResNet152V2 | 232 | 78.0% | 94.2% | 60.4M | 307 | 107.5 | 6.6 |
InceptionV3 | 92 | 77.9% | 93.7% | 23.9M | 189 | 42.2 | 6.9 |
InceptionResNetV2 | 215 | 80.3% | 95.3% | 55.9M | 449 | 130.2 | 10.0 |
MobileNet | 16 | 70.4% | 89.5% | 4.3M | 55 | 22.6 | 3.4 |
MobileNetV2 | 14 | 71.3% | 90.1% | 3.5M | 105 | 25.9 | 3.8 |
DenseNet121 | 33 | 75.0% | 92.3% | 8.1M | 242 | 77.1 | 5.4 |
DenseNet169 | 57 | 76.2% | 93.2% | 14.3M | 338 | 96.4 | 6.3 |
DenseNet201 | 80 | 77.3% | 93.6% | 20.2M | 402 | 127.2 | 6.7 |
NASNetMobile | 23 | 74.4% | 91.9% | 5.3M | 389 | 27.0 | 6.7 |
NASNetLarge | 343 | 82.5% | 96.0% | 88.9M | 533 | 344.5 | 20.0 |
EfficientNetB0 | 29 | 77.1% | 93.3% | 5.3M | 132 | 46.0 | 4.9 |
EfficientNetB1 | 31 | 79.1% | 94.4% | 7.9M | 186 | 60.2 | 5.6 |
EfficientNetB2 | 36 | 80.1% | 94.9% | 9.2M | 186 | 80.8 | 6.5 |
EfficientNetB3 | 48 | 81.6% | 95.7% | 12.3M | 210 | 140.0 | 8.8 |
EfficientNetB4 | 75 | 82.9% | 96.4% | 19.5M | 258 | 308.3 | 15.1 |
EfficientNetB5 | 118 | 83.6% | 96.7% | 30.6M | 312 | 579.2 | 25.3 |
EfficientNetB6 | 166 | 84.0% | 96.8% | 43.3M | 360 | 958.1 | 40.4 |
EfficientNetB7 | 256 | 84.3% | 97.0% | 66.7M | 438 | 1578.9 | 61.6 |
EfficientNetV2B0 | 29 | 78.7% | 94.3% | 7.2M | - | - | - |
EfficientNetV2B1 | 34 | 79.8% | 95.0% | 8.2M | - | - | - |
EfficientNetV2B2 | 42 | 80.5% | 95.1% | 10.2M | - | - | - |
EfficientNetV2B3 | 59 | 82.0% | 95.8% | 14.5M | - | - | - |
EfficientNetV2S | 88 | 83.9% | 96.7% | 21.6M | - | - | - |
EfficientNetV2M | 220 | 85.3% | 97.4% | 54.4M | - | - | - |
EfficientNetV2L | 479 | 85.7% | 97.5% | 119.0M | - | - | - |
Install
pip install tensorflow-gpu >= 2
pip install tlearner
How to use
-
Initialize
from tlearner.efficientnet import transfer_learner learner = transfer_learner("my_model", W = 224) # my_model.h5df will be the model name
-
Load data
learner.load_dataset('my_data_folder', PKL_PATH = "my_dataset.pkl") # Images in each subfolder of my_data_folder are treated as one class. If PKL_PATH is specified, a pkl that contains X_train, y_train, X_val, y_val, etc. will be generated.
print(learner.class_names) # print class names -
Train a new model
hist = learner.train_custom_model("EfficientNetB1", batch = 8, epochs = [10,0], optimizer = "adam") # EfficientNetB0-B7 can be used.
plot_history(hist) # plot training curves -
Evaluate
learner.evaluate(N = 30) # predict the first N samples in X_val
-
Predict
learner.predict_file('my_image.jpg')
-
Convert [Optional]
learner.convert_to_tflite(v1 = True) # convert to a local tflite model
-
Load an existing model
learner.load_best_model() # if you have an existing local model
learner.get_best_model().summary() # print model architecture
learner.plot_best_model() # save model architecture to a local image file
Jupyter notebooks
Under /notebooks, we provide two examples. One is flower image classification; the other is fundus image classification.
Deployment
After training, you will get a keras h5 model file. You can further convert it to tflite format, or tfjs format (efficient net is not supported yet).
Then you can deploy on mobile device or browser-based apps.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file tlearner-0.1.5.tar.gz
.
File metadata
- Download URL: tlearner-0.1.5.tar.gz
- Upload date:
- Size: 14.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2c1589e6f539f1751e9af7e3c40e56b755f52c7b472aab73af0fa39f43040bc1 |
|
MD5 | 3074f62397693a499d52dd35eb8462da |
|
BLAKE2b-256 | 20982b601566a775201014d92b6f39f5f2d94c5d0d6cd15d5ee88993179e8cd4 |
File details
Details for the file tlearner-0.1.5-py3-none-any.whl
.
File metadata
- Download URL: tlearner-0.1.5-py3-none-any.whl
- Upload date:
- Size: 11.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0baea2ba48c492c508e85dc0e2d5546770768bcc08170ed688fbe58dde9d0a51 |
|
MD5 | 40684e66ee4cb3400a607366b4963863 |
|
BLAKE2b-256 | 224714aabae4a2b21a7757e33fec4668aa0a5e34c0ba1bd6413dca7fc0879dc5 |