Skip to main content

AI Verify implementation of the Accumulated Local Effect algorithm. The algorithm provides black box explainations of how features and their corresponding values influence the prediction of a model.

Project description

Algorithm - Accumulated Local Effect

Description

  • Performs ALE Discrete and ALE Continuous computation

License

  • Licensed under Apache Software License 2.0

Developers:

  • AI Verify

Installation

Each test algorithm can now be installed via pip and run individually.

pip install aiverify-accumulated-local-effect==2.0.0a1

Example Usage:

Run the following bash script to execute the plugin

#!/bin/bash

root_path="<PATH_TO_FOLDER>/aiverify/stock-plugins/user_defined_files"
python -m aiverify_accumulated_local_effect \
    --data_path  $root_path/data/sample_bc_credit_data.sav \
    --model_path $root_path/model/sample_bc_credit_sklearn_linear.LogisticRegression.sav \ 
    --ground_truth_path $root_path/data/sample_bc_credit_data.sav \
    --ground_truth default \
    --model_type CLASSIFICATION

If the algorithm runs successfully, the results of the test will be saved in an output folder.

Develop plugin locally

Execute the bash script below in the project root

#!/bin/bash

# setup virtual environment
python -m venv .venv
source .venv/bin/activate

# execute plugin
cd aiverify/stock-plugins/aiverify.stock.accumulated-local-effect/algorithms/accumulated_local_effect/
# install aiverify-test-engine 
pip install -e '.[dev]'

python -m aiverify_accumulated_local_effect --data_path  <data_path> --model_path <model_path> --ground_truth_path <ground_truth_path> --ground_truth <str> --model_type CLASSIFICATION --run_pipeline

Build Plugin

cd aiverify/stock-plugins/aiverify.stock.accumulated-local-effect/algorithms/accumulated_local_effect/
hatch build

Tests

Pytest is used as the testing framework.

Run the following steps to execute the unit and integration tests inside the tests/ folder

cd aiverify/stock-plugins/aiverify.stock.accumulated-local-effect/algorithms/accumulated_local_effect/
pytest .

Run using Docker

In the aiverify root directory, run the below command to build the docker image

docker build -t aiverify-accumulated-local-effect:v2.0.0a1 -f stock-plugins/aiverify.stock.accumulated-local-effect/algorithms/accumulated_local_effect/Dockerfile .

Switch to the algorithm directory

cd stock-plugins/aiverify.stock.accumulated-local-effect/algorithms/accumulated_local_effect/

Run the below bash script to run the algorithm

#!/bin/bash

root_path="<PATH_TO_FOLDER>/aiverify/stock-plugins/user_defined_files"
docker run \
  -v $root_path:/user_defined_files \
  -v ./output:/app/aiverify/stock-plugins/aiverify.stock.accumulated-local-effect/algorithms/accumulated_local_effect/output \
  aiverify-accumulated-local-effect:v2.0.0a1 \
  --data_path /user_defined_files/data/sample_bc_credit_data.sav \
  --model_path /user_defined_files/model/sample_bc_credit_sklearn_linear.LogisticRegression.sav \
  --ground_truth_path /user_defined_files/data/sample_bc_credit_data.sav \
  --ground_truth default \
  --model_type CLASSIFICATION 

If the algorithm runs successfully, the results of the test will be saved in an output folder in the algorithm directory.

Tests

Pytest is used as the testing framework.

Run the following steps to execute the unit and integration tests inside the tests/ folder

docker run --entrypoint python3 aiverify-accumulated-local-effect:v2.0.0a1 -m pytest .

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tlrx_accumulated_local_effect-2.0.0a1.tar.gz (22.8 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file tlrx_accumulated_local_effect-2.0.0a1.tar.gz.

File metadata

File hashes

Hashes for tlrx_accumulated_local_effect-2.0.0a1.tar.gz
Algorithm Hash digest
SHA256 00e7b159f671dc7336ede1af011849f04b35cf201d2f766e83bd6b4ed1d860cd
MD5 ca0f4bcbb9a5dd46b1457120a9068b14
BLAKE2b-256 daa4ed6065ac72253c1d41c3e3ddb2298cd1399667b2aa3f72e869f60b7f935f

See more details on using hashes here.

File details

Details for the file tlrx_accumulated_local_effect-2.0.0a1-py3-none-any.whl.

File metadata

File hashes

Hashes for tlrx_accumulated_local_effect-2.0.0a1-py3-none-any.whl
Algorithm Hash digest
SHA256 11948fc3a0c4690f96383a10b7794082b05b38e64a6ac198e5a993051ec5aabe
MD5 01e3433a7557b65ec207d1f17a24a797
BLAKE2b-256 39ce2d055bb21f9e2c68677697dd5adeef9c0ee109fa395c5fd1b6ba8108647b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page