Skip to main content

Time-lagged t-SNE of molecular trajectories

Project description

PyPI Total alerts

tltsne

Time-lagged t-SNE of molecular trajectories.

Authors

Vojtech Spiwok and Pavel Kriz

Usage

Trajectory of molecular simulation is dimensionally reduced by t-distributed stochastic embedding (t-SNE) [1] and by a version of t-SNE that focuses on slow motions via analysis inspired by time-lagged independent component analysis (TICA) [2,3].

The input is a trajectory in pdb, xtc, trr, dcd, netcdf or mdcrd (only atoms intended for analysis). The second input file is a topology (pdb file with same atoms as in trajectory). Output contains frame ID, PCA, TICA, t-SNE and time-lagged t-SNE coordinates.

usage: tltsne [-h] [-i INFILE] [-p INTOP] [-o OUTFILE] [-nofit NOFIT]
              [-lagtime LAGTIME] [-pcadim PCADIM] [-ticadim TICADIM]
              [-maxpcs MAXPCS] [-ncomp NCOMP] [-perplex1 PERPLEX1]
              [-perplex2 PERPLEX2] [-rate RATE] [-niter NITER] [-exag EXAG]

Time-lagged t-SNE of simulation trajectories, requires scimpy, pyemma, sklearn
and mdtraj

optional arguments:
  -h, --help          show this help message and exit
  -i INFILE           Input trajectory in pdb, xtc, trr, dcd, netcdf or mdcrd
                      of atoms to be analyzed. No jumps in PBC allowed.
  -p INTOP            Input topology in pdb with atoms to be analyzed.
  -o OUTFILE          Output file.
  -nofit NOFIT        Structure is NOT fit to reference topology if nofit is
                      set to 1 (default 0).
  -lagtime LAGTIME    Lag time in number of frames (default 1).
  -pcadim PCADIM      Number o PCA coordinates to be printed (defaut 2).
  -ticadim TICADIM    Number o TICA coordinates to be printed (defaut 2).
  -maxpcs MAXPCS      Number of TICA coordinates to be passed to t-SNE
                      (default 50).
  -ncomp NCOMP        Number of t-SNE and time-lagged t-SNE coordinates to be
                      printed (defaut 2).
  -perplex1 PERPLEX1  Perplexity of t-SNE (default 10.0).
  -perplex2 PERPLEX2  Perplexity of time-lagged t-SNE (default 10.0).
  -rate RATE          Learnning rate of t-SNE and time-lagged t-SNE (default
                      200.0).
  -niter NITER        Number of iterations of t-SNE and time-lagged t-SNE
                      (default 1000).
  -exag EXAG          Early exaggeration of t-SNE and time-lagged t-SNE.

Install

Install via PIP:

pip3 install tltsne

(or with sudo).

Install from GitHub:

git clone https://github.com/spiwokv/tltsne.git
cd tltsne
pip3 install .

(or with sudo).

Thanks

  • pyemma [4]
  • mdtraj [5]
  • scipy [6]
  • sklearn [7]

References

  1. L.J.P. van der Maaten, G.E. Hinton. Visualizing High-Dimensional Data Using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579-2605.

  2. G. Perez-Hernandez, F. Paul, T. Giorgino, G. de Fabritiis, F. Noé: Identification of slow molecular order parameters for Markov model construction. J. Chem. Phys. 2013, 139, 015102.

  3. C. R. Schwantes and V. S. Pande: Improvements in Markov state model construction reveal many non-native interactions in the folding of NTL9. J. Chem. Theory Comput. 2013, 9, 2000-2009.

  4. http://emma-project.org/

  5. http://mdtraj.org/1.9.3/

  6. https://www.scipy.org/

  7. https://scikit-learn.org/

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tltsne-0.0.2.tar.gz (5.2 kB view details)

Uploaded Source

Built Distribution

tltsne-0.0.2-py3-none-any.whl (6.4 kB view details)

Uploaded Python 3

File details

Details for the file tltsne-0.0.2.tar.gz.

File metadata

  • Download URL: tltsne-0.0.2.tar.gz
  • Upload date:
  • Size: 5.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.6.9

File hashes

Hashes for tltsne-0.0.2.tar.gz
Algorithm Hash digest
SHA256 365d2913ebb7fb1206e881a8b05c1966dfc42509eee06a594719b87cd152cda0
MD5 48e40516ba3ae559a58647a0626a4cb8
BLAKE2b-256 4f0358ce360d581fb9bf4bc101d803641a0c7543c0b6cf0aced9b59bacccf917

See more details on using hashes here.

File details

Details for the file tltsne-0.0.2-py3-none-any.whl.

File metadata

  • Download URL: tltsne-0.0.2-py3-none-any.whl
  • Upload date:
  • Size: 6.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.6.9

File hashes

Hashes for tltsne-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 d6961fd3ea9b6d6ceb79fdb474dabbc0d823c1bc695d96331cca642a6bdd4cbe
MD5 153ef587e4f8a2eb874be66738df7f30
BLAKE2b-256 b548e89debf02405dbb524dea7c3a8f1b08cb8a36812f66f4e21a4d99caeaa49

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page