Skip to main content

A python module for TM1.

Project description

TM1py is the python package for IBM Planning Analytics (TM1).

with TM1Service(address='localhost', port=8001, user='admin', password='apple', ssl=True) as tm1:
    subset = Subset(dimension_name='Month', subset_name='Q1', elements=['Jan', 'Feb', 'Mar'])
    tm1.subsets.create(subset, private=True)

Features

TM1py offers handy features to interact with TM1 from Python, such as

  • Functions to read data from cubes through cube views or MDX queries (e.g. tm1.cells.execute_mdx)
  • Functions to write data to cubes (e.g. tm1.cells.write)
  • Functions to update dimensions and hierarchies (e.g. tm1.hierarchies.get)
  • Functions to update metadata, clear or write to cubes directly from pandas dataframes (e.g. tm1.elements.get_elements_dataframe)
  • Async functions to easily parallelize your read or write operations (e.g. tm1.cells.write_async)
  • Functions to execute TI process or loose statements of TI (e.g. tm1.processes.execute_with_return)
  • CRUD features for all TM1 objects (cubes, dimensions, subsets, etc.)

Requirements

  • python (3.7 or higher)
  • requests
  • requests_negotiate_sspi
  • TM1 11, TM1 12
  • keyring

Optional Requirements

  • pandas

Install

without pandas

pip install tm1py

with pandas

pip install "tm1py[pandas]"

keyring

pip install keyring

Usage

TM1 11 on-premise

from TM1py.Services import TM1Service

with TM1Service(address='localhost', port=8001, user='admin', password='apple', ssl=True) as tm1:
    print(tm1.server.get_product_version())

TM1 11 on IBM cloud

with TM1Service(
        base_url='https://mycompany.planning-analytics.ibmcloud.com/tm1/api/tm1/',
        user="non_interactive_user",
        namespace="LDAP",
        password="U3lSn5QLwoQZY2",
        ssl=True,
        verify=True,
        async_requests_mode=True) as tm1:
    print(tm1.server.get_product_version())

TM1 12 MCSP

from TM1py import TM1Service

params = {
    "base_url": "https://us-east-1.planninganalytics.saas.ibm.com/api/<TenantId>/v0/tm1/<DatabaseName>/",
    "user": "apikey",
    "password": "<TheActualApiKey>",
    "async_requests_mode": True,
    "ssl": True,
    "verify": True
}

with TM1Service(**params) as tm1:
    print(tm1.server.get_product_version())

TM1 12 PAaaS

with TM1Service(
        address="us-east-2.aws.planninganalytics.ibm.com",
        api_key="AB4VfG7T8wPM-912uFKeYG5PGh0XbS80MVBAt7SEG6xn",
        iam_url="https://iam.cloud.ibm.com/identity/token",
        tenant="YA9A2T8BS2ZU",
        database="Database") as tm1:
    print(tm1.server.get_product_version())

TM1 12 on-premise & Cloud Pak For Data

with TM1Service(
        address="tm1-ibm-operands-services.apps.cluster.your-cluster.company.com",
        instance="your instance name",
        database="your database name",
        application_client_id="client id",
        application_client_secret="client secret",
        user="admin",
        ssl=True) as tm1:

    print(tm1.server.get_product_version())

Documentation

https://tm1py.readthedocs.io/en/master/

Issues

If you find issues, sign up in Github and open an Issue in this repository

Contribution

TM1py is an open source project. It thrives on contribution from the TM1 community. If you find a bug or feel like you can contribute please fork the repository, update the code and then create a pull request so we can merge in the changes.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tm1py-2.0.4.tar.gz (146.6 kB view details)

Uploaded Source

File details

Details for the file tm1py-2.0.4.tar.gz.

File metadata

  • Download URL: tm1py-2.0.4.tar.gz
  • Upload date:
  • Size: 146.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for tm1py-2.0.4.tar.gz
Algorithm Hash digest
SHA256 72a7730d9641274702e5bf942b882cfe08d1b9303169ceeb6b4eb19460f92594
MD5 1e32cb4588bcc894c757a4851a3fb93d
BLAKE2b-256 14e93069687a0a6bf7ff51f93b8b116b150c558d1b05e3a460f6efc1771fcca6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page