Skip to main content

A Python package for visualizing large, high-dimensional data sets.

Project description

tmap

tmap is a very fast visualization library for large, high-dimensional data sets. Currently, tmap is available for Python. tmaps graph layouts are based on the OGDF library.

Tutorial and Documentation

See http://tmap.gdb.tools

Notebook

Examples

Name Description
NIPS Conference Papers A tmap visualization showing the linguistic relationship between NIPS conference papers. view
Project Gutenberg A tmap visualization of the linguistic relationships between books and authors extracted from Project Gutenberg. view
MNIST A visualization of the well known MNIST data set. No further explanation needed. view
Fashion MNIST A visualization of a more fashionable variant of MNIST. view
Drugbank A tmap visualization of all drugs registered in Drugbank. view
RNAseq RNA sequencing data of tumor samples. Visualized using tmap. view
Flowcytometry Flowcytometry data visualized using tmap. view
MiniBooNE tmap data visualization of a particle detection physics experiment. view

Availability

Language Operating System Status
Python Linux Available
Windows Available1
macOS Available
R Unvailable2

1Works with WSL
2FOSS R developers wanted!

Installation

tmap is installed using the conda package manager. Don't have conda? Download miniconda.

conda install -c tmap tmap

We suggest using faerun to plot the data layed out by tmap. But you can of course also use matplotlib (which might be to slow for large data sets and doesn't provide interactive features).

pip install faerun
# pip install matplotlib

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tmap_viz-1.0.16-pp39-pypy39_pp73-win_amd64.whl (678.1 kB view details)

Uploaded PyPy Windows x86-64

tmap_viz-1.0.16-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

tmap_viz-1.0.16-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (4.7 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

tmap_viz-1.0.16-pp38-pypy38_pp73-win_amd64.whl (678.1 kB view details)

Uploaded PyPy Windows x86-64

tmap_viz-1.0.16-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

tmap_viz-1.0.16-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (4.7 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

tmap_viz-1.0.16-pp37-pypy37_pp73-win_amd64.whl (678.0 kB view details)

Uploaded PyPy Windows x86-64

tmap_viz-1.0.16-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

tmap_viz-1.0.16-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (4.7 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

tmap_viz-1.0.16-cp310-cp310-win_amd64.whl (678.8 kB view details)

Uploaded CPython 3.10 Windows x86-64

tmap_viz-1.0.16-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

tmap_viz-1.0.16-cp310-cp310-macosx_10_9_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

tmap_viz-1.0.16-cp39-cp39-win_amd64.whl (678.7 kB view details)

Uploaded CPython 3.9 Windows x86-64

tmap_viz-1.0.16-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

tmap_viz-1.0.16-cp39-cp39-macosx_10_9_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

tmap_viz-1.0.16-cp38-cp38-win_amd64.whl (678.7 kB view details)

Uploaded CPython 3.8 Windows x86-64

tmap_viz-1.0.16-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

tmap_viz-1.0.16-cp38-cp38-macosx_10_9_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

tmap_viz-1.0.16-cp37-cp37m-win_amd64.whl (693.5 kB view details)

Uploaded CPython 3.7m Windows x86-64

tmap_viz-1.0.16-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

tmap_viz-1.0.16-cp37-cp37m-macosx_10_9_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

tmap_viz-1.0.16-cp36-cp36m-win_amd64.whl (691.8 kB view details)

Uploaded CPython 3.6m Windows x86-64

tmap_viz-1.0.16-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

tmap_viz-1.0.16-cp36-cp36m-macosx_10_9_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file tmap_viz-1.0.16-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for tmap_viz-1.0.16-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 83f67714a6816f90e2368773d57a5e565d713d2f4b6ca4132ca9c9e1b64e90fa
MD5 df9695d88c43c62f8e9d059f52c6f73b
BLAKE2b-256 607a8fc9e627f947a6b9c77af3ef17d8cc94733742cc9412fc69aaf560651165

See more details on using hashes here.

File details

Details for the file tmap_viz-1.0.16-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tmap_viz-1.0.16-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4c0065008a94a2931ba42dd5d652fe96015000e471e4bba351cce8835648fd56
MD5 1d09aff4c8287b0420672cb9b9967253
BLAKE2b-256 bb2bd6707070b6eb614a491d0c164092d61b260738e122fe1815137b8fb9b20d

See more details on using hashes here.

File details

Details for the file tmap_viz-1.0.16-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tmap_viz-1.0.16-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8f1d5ab8643fbbd54d2d602e3988d3316a62e27ac67c890f328af4a00e299e3c
MD5 98f2026c7f0b585ac4a5dc98551c1cd2
BLAKE2b-256 6c6ace0f37822a8caa77fcac7395ed2cab1971a5371998252ed6c0cfd9e3a561

See more details on using hashes here.

File details

Details for the file tmap_viz-1.0.16-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for tmap_viz-1.0.16-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 286b5e477f3e78838452183e4954b537ed68c2d4f485b35a6da8f3b3f9b722e7
MD5 46dc4d030285165ab90b739d75337cb6
BLAKE2b-256 55024fc8931da28b0281e2c490d289333d5c5ef309227dff21f7e98c1119e3f8

See more details on using hashes here.

File details

Details for the file tmap_viz-1.0.16-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tmap_viz-1.0.16-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9a246a8eaebc9f17d424e51477e4623aef0647741f032ca9a2e47797b9f9a255
MD5 901880a2209d8e6c8c925ee27f3fbda1
BLAKE2b-256 285b96e1b7c96eb273a8348ede5e42b3b9a11aced7717c0713b6668a98e36224

See more details on using hashes here.

File details

Details for the file tmap_viz-1.0.16-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tmap_viz-1.0.16-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 237277b13bbd6470b766f6594fa3fd4e7b8ed051637aad8de029fa81046c401b
MD5 55ef6c0cfe43787a40e47f753eb950af
BLAKE2b-256 df09cf0736f33306f08fe58090edd6a2cb7a96a98215aafee233850c0b7b029e

See more details on using hashes here.

File details

Details for the file tmap_viz-1.0.16-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for tmap_viz-1.0.16-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 3568608a662b42ebb6bfd43701cd30ebeb597092078ea9b01c2c23ea2cef1dfb
MD5 9408a2d482d04cbc25350e4ee2adb716
BLAKE2b-256 cd8b6ceaea14ffda0d467710a74b5fb8f1eaea2713e024454325af41a1052497

See more details on using hashes here.

File details

Details for the file tmap_viz-1.0.16-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tmap_viz-1.0.16-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4681f22db050462de585de7d6fdf40f85f0541dcee70ecb7265f8fb7d5e2b87d
MD5 a2a5cd137eab5feddc5d56da84b45d51
BLAKE2b-256 238b9d52a5d1bb07cc93f0f4f951f7b4ceefbed88248f94b33cc0dbdc7da8553

See more details on using hashes here.

File details

Details for the file tmap_viz-1.0.16-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tmap_viz-1.0.16-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 006d65262445b2fa34a2b4d308ef3d91e1eac0c722eb52bcdb5dbf2e93994679
MD5 6ea87ee7d0bfc77f14528760bbb265b7
BLAKE2b-256 0788e7b9a887e560b7ef0ef1543f9113b8d41043658ef1b52c0338c432d8cac4

See more details on using hashes here.

File details

Details for the file tmap_viz-1.0.16-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tmap_viz-1.0.16-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 3c3829f07de4d5529aec44375b446ba74436670f4f2a28dacf318752cb07fba0
MD5 34e0339dd300443d9b322a2aac479148
BLAKE2b-256 b03a29de8de14b733469e389758cae0f6cf27d967e6af4578c3c7789c6739b6b

See more details on using hashes here.

File details

Details for the file tmap_viz-1.0.16-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tmap_viz-1.0.16-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 95fbf87ee4c65260fa2372e45c3970fbad10a326f5d72ad3304d02c4605a471c
MD5 373020d4a7dcbffa66700bb45ae2a6f3
BLAKE2b-256 0460271b5c56a583108a3daf1f5b0516cdba3eeddd650a2af7fce9c40edb3e31

See more details on using hashes here.

File details

Details for the file tmap_viz-1.0.16-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tmap_viz-1.0.16-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 13e966fbdc8fda73e15448ced433edcc7f4419d4271792dd16a6223574be32dd
MD5 a90e8047552d4570e1ad65767a263253
BLAKE2b-256 7d5f751a21d4ba7bd304c35819daf12d4bc7312b3b4a8d9cd8dfd6c042cc81d2

See more details on using hashes here.

File details

Details for the file tmap_viz-1.0.16-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tmap_viz-1.0.16-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 678.7 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.7.13

File hashes

Hashes for tmap_viz-1.0.16-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 593ce8579fdab793161d32c1b454a9340fa68b238f5b5491dfa9a31f8a46f2e4
MD5 676a63030d75e0ad7cc525a072f1e6b8
BLAKE2b-256 17e166d6da6e5a08cbe777a72fe5fe2f9ffe98123b91dd2ed39a0a74e49d07fb

See more details on using hashes here.

File details

Details for the file tmap_viz-1.0.16-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tmap_viz-1.0.16-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 766b5b4a436fd3794c4b5894ba94197b342fca1b8f35c83608bd67e076cd7e29
MD5 23309487025800a744a31b3cf74b9a42
BLAKE2b-256 f7550fd9939e259e3427f9c8d2c871d6d1eb7191b68e70372c6647abce3cf12d

See more details on using hashes here.

File details

Details for the file tmap_viz-1.0.16-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tmap_viz-1.0.16-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 33be5e01554aeeb927fd2d21c10319b09d2b86ca178fc0769baf7ac819a05fde
MD5 30184d0cba25a93985d5064ccfa44b90
BLAKE2b-256 f179c5ee60bb55183428df8cc7c9ed633b617f8241fbe5501e7af7db4a43a4b3

See more details on using hashes here.

File details

Details for the file tmap_viz-1.0.16-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tmap_viz-1.0.16-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 678.7 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.7.13

File hashes

Hashes for tmap_viz-1.0.16-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 27500bc427a78edc840eddb199fa1679db27ca180ae56bc4c560328e40111ee6
MD5 1460ef734992383917937367868bca9b
BLAKE2b-256 7f5baf3e7f0ebedab19520ee7b967154498b67115174c994f7f31b3db02c7139

See more details on using hashes here.

File details

Details for the file tmap_viz-1.0.16-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tmap_viz-1.0.16-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a3da2200959971a33d22f90ce874fc2b7d32fe5b5a291c9319cda8fb075b88c1
MD5 e6f789eadb4426b6916ff32945b49570
BLAKE2b-256 0399eeae60858c11a10940768be52d420c58fa625879ff85c77ee490bec789c8

See more details on using hashes here.

File details

Details for the file tmap_viz-1.0.16-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tmap_viz-1.0.16-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e5bd8bcb03122b068328d639a7974eb7521720302f0c48a67f2faa2705fbb7c5
MD5 5382bcb84f4369dff7f99ccfb68deba9
BLAKE2b-256 67dccf68a518881d187b1d514da23ae52ebb461d07d1a02eea95c3fd8a519a16

See more details on using hashes here.

File details

Details for the file tmap_viz-1.0.16-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tmap_viz-1.0.16-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 693.5 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.7.13

File hashes

Hashes for tmap_viz-1.0.16-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 6ebd013df86c69d51ff894fcffc969c6468ca54980bd1702414e563ed7121445
MD5 6585f9e007dfd7a30fc71b09ea182a18
BLAKE2b-256 2af2559175176435706e63555089630eefde3df4fd3dc893f5a5b4884c537396

See more details on using hashes here.

File details

Details for the file tmap_viz-1.0.16-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tmap_viz-1.0.16-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 47c8340f2204adfb5f715640103dd98400b0e4ee46800408a450b90d7f5b9d87
MD5 4fa6cc6f14b164f046eaafca7ddab064
BLAKE2b-256 5e4a4ee5f13824b843f49ccf7170adda78d7c8fb7e3e694f3074de4078d1fd86

See more details on using hashes here.

File details

Details for the file tmap_viz-1.0.16-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tmap_viz-1.0.16-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 48f9e9fe6abc5974703d5a4888df6878d3a416fdee216d791f417d5600d2359f
MD5 b9e89ed35b7a859807b209619bb2e3e5
BLAKE2b-256 56b7a5c777c914f84eb9beaed3d44a4bba02568bedec066bcb285d767b53f209

See more details on using hashes here.

File details

Details for the file tmap_viz-1.0.16-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: tmap_viz-1.0.16-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 691.8 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.7.13

File hashes

Hashes for tmap_viz-1.0.16-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 3410507fafdf46ed3c0f8fa36f57340cf9384687f95252ffa5ab327d609bd50f
MD5 1026096d94069b166136669a537c83ea
BLAKE2b-256 f0e173744b863841067f01214ebfa73758bf1691b5e04750410dcc3299fc440b

See more details on using hashes here.

File details

Details for the file tmap_viz-1.0.16-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tmap_viz-1.0.16-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f55b18569499c7952bb53ddd2fd546a06e925cd6f6134dfa55a3f16a9439176c
MD5 e80fa1ce89bc5e1b0c998628d5569e11
BLAKE2b-256 fe14944dd73516683b7ccc71cf58e080a7b6e1ab9b0c149a0a51c09bed743113

See more details on using hashes here.

File details

Details for the file tmap_viz-1.0.16-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tmap_viz-1.0.16-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 670843d383999f5dae495c96e761a320824483a09334bac9e7883119dd28f810
MD5 70070d7796c72e37f2d8823c8ab7c9b1
BLAKE2b-256 336ece2617c443d75ff543bfd0e9a7f455093c46ca500ba68281d3908e8621c1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page