Skip to main content

Radiative transfer modelling of the adjacency effect in aquatic remote sensing

Project description

T-Mart: Topography-adjusted Monte-carlo Adjacency-effect Radiative Transfer Code

Description

T-Mart solves the radiative transfer in a 3D ocean-atmosphere system through a Monte-Carlo approach. T-Mart features arbitrary surface models which allow simulations of the adjacnecy effect in aquatic remote sensing.

Links

Home page: https://github.com/yulunwu8/tmart

User guide: https://tmart-rtm.github.io

Installation

1 - Create a conda environment and activate it:

conda create --name tmart python=3.9
conda activate tmart

2 - Install dependencies:

conda install -c conda-forge Py6S numpy pandas scipy pathos matplotlib

3 - Install tmart:

pip3 install tmart

Test Run

import tmart
import numpy as np
from Py6S.Params.atmosprofile import AtmosProfile

# Specify wavelength in nm
wl = 400

# DEM and reflectance ###
image_DEM = np.array([[0,0],[0,0]]) # in meters
image_reflectance = np.array([[0.1,0.1],[0.1,0.1]]) # unitless     
image_isWater = np.zeros(image_DEM.shape) # 1 is water, 0 is land
image_isWater = np.array([[1,1],[1,1]])

# Synthesize a surface object
my_surface = tmart.Surface(DEM = image_DEM,
                           reflectance = image_reflectance,
                           isWater = image_isWater,
                           cell_size = 10_000)  
                               
### Atmosphere ###
atm_profile = AtmosProfile.PredefinedType(AtmosProfile.MidlatitudeSummer) 
aerosol_type = 'Maritime'  
my_atm = tmart.Atmosphere(atm_profile, aot550 = 0, aerosol_type = 'Maritime'  )

### Running T-Mart ###
my_tmart = tmart.Tmart(Surface = my_surface, Atmosphere= my_atm, shadow=False)
my_tmart.set_geometry(sensor_coords=[51,50,130_000], 
                      target_pt_direction=[180,0],
                      sun_dir=[0,0])

results = my_tmart.run(wl=wl, band=None, n_photon=10_000,nc= 10,njobs= 100)
results = np.vstack(results)

# Calculate reflectances using recorded photon information 
R = tmart.calc_ref(results)
for k, v in R.items():
    print(k, '     ' , v)

Output should be similar to below:

========= Initiating T-Mart =========
Number of photons: 10000
Using 10 core(s)
Number of job(s): 100
Wavelength: 400
target_pt_direction: [180, 0]
sun_dir: [0, 0]
=====================================
Tasks remaining = 102
Tasks remaining = 72
Tasks remaining = 42
Tasks remaining = 12
=====================================
Calculating reflectances...
R_atm       0.12576169910706145
R_dir       0.11418041191253057
R_env       0.013670152459801528
R_total       0.25361226347939353

Other

For questions and suggestions (which I'm always open to!), please email yulunwu8@gmail.com

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tmart-1.2.3.tar.gz (111.9 kB view hashes)

Uploaded Source

Built Distribution

tmart-1.2.3-py3-none-any.whl (124.0 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page