TensorMesh CLI tool suite
Project description
Documentation
Installation
pip install tmesh
CLI Tree
1. tmesh-cli benchmark
Format:
tmesh-cli benchmark --endpoint "<YOUR_OPEN_AI_API_ENDPOINT>" --api-key "<OPTIONAL_API_KEY>" [--model "<OPTIONAL_MODEL>"]
Example:
tmesh-cli benchmark --endpoint "http://89.169.111.29:30080/" --api-key "vllm_sk_555a1b7ff3e0f617b1240375ea411c2a5f08d2666fcdc718075f66c9"
The model at the endpoint will automatically be discovered (or you can manually pass it in) and the benchmark will run ad infinitum.
Discovery and Configuration:
endpoint: http://localhost:8000/v1/
found model: Qwen/Qwen3-30B-A3B-Instruct-2507
offload_size: 100
Workload Specifications:
Model: Qwen/Qwen3-30B-A3B-Instruct-2507
Number of Contexts: 30
Number of Questions per Context: 30
Max Inflight Requests (Load-Balancing): 10
Input Length: 32000
Output Length: 100
Continually send M long contexts that will always have N randomly generated questions appended to them.
Hardcoded Configurations:
- 32k token context length
- 100 token output length
- TensorMesh SaaS configurations in:
src/benchmark/model_configs.json
Discovered Configurations:
- Model name (must be one of the ones supported by LMIgnite inside of model_configs.json)
- Number of contexts
- Number of questions per context
- Maximum Inflight Requests
Refreshing Logs every 5 seconds
Elapsed Time: 165.0652596950531
Total Number of Requests Processed: 280
QPS: 1.696298788232491
Global Average TTFT: 3.77425986954144
Global Average ITL: 0.01485872107813842
Global Average Prefill Throughput: 22871.74402415523
Global Average Decode Throughput: 104.11856198232987
Requests Processed in Interval: 0
Interval Average TTFT: 2.5995567440986633
Interval Average ITL: 0.012132209007956864
Interval Average Prefill Throughput: 25740.820827727515
Interval Average Decode Throughput: 90.82104365217528
2.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file tmesh-0.1.17.tar.gz.
File metadata
- Download URL: tmesh-0.1.17.tar.gz
- Upload date:
- Size: 9.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.2.0 CPython/3.12.12
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
aee16e9473c598505db60ee6caffc26ac63a5666d4454d030ce7d0b13119ddca
|
|
| MD5 |
5cfcd4a6f972f76b59cccfb86e3aef0e
|
|
| BLAKE2b-256 |
f20fa5551f5bd9a8bff5a8b05acab05a58a98c88d0b37e0199e8a10e94572f09
|
File details
Details for the file tmesh-0.1.17-py3-none-any.whl.
File metadata
- Download URL: tmesh-0.1.17-py3-none-any.whl
- Upload date:
- Size: 9.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.2.0 CPython/3.12.12
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
b0a437d987414f29053b4b0fb92df836a7deafd930376c0c230128136b376277
|
|
| MD5 |
857e4f36a6f7ede7e1efe6f7a8bf2c5f
|
|
| BLAKE2b-256 |
5a6151ba49cdda4bfd03cd9ff19f51e64e2a4d241ffdfee1ad58318aff663d52
|