Skip to main content
Join the official 2020 Python Developers SurveyStart the survey!

A package for reducing dimension of gene expression profilesand doing clustering them.

Project description

Topic Models for Single Cell Clustering

.. image::

.. image::

.. image::
:alt: Documentation Status

A package for reducing dimension of gene expression profiles and doing clustering them.

.. code-block:: console

$ pip install tmscc

for more information, see

.. code-block:: python

from tmscc import tm
import numpy as np
import pandas as pd
from sklearn.cluster import KMeans

profile = pd.DataFrame(
np.arange(200).reshape([5, 40])
) # gene expression profile (genes*cells matrix)
profile.index = ['CHEK2', 'MSH2', 'PTEN', 'TSC1', 'HER2']

lda = tm.LDA(
# LDA's estimation (This takes some time.)
# lda's theta() can be used for clustering, such as k-means
kmeans = KMeans(n_clusters=2).fit_predict(lda.theta())

* Free software: MIT license
* Documentation:




* Python >= 3.5
* Java >= 1.8


* This package owes what this is to `Mallet`_. Thank you for the wonderful toolkit!

.. _Mallet:


0.2.0 (2018-03-16)

* Add LDA implementation.
* Add some documents.

0.1.0 (2018-03-14)

* First release on PyPI.

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for tmscc, version 0.3.0
Filename, size File type Python version Upload date Hashes
Filename, size tmscc-0.3.0.tar.gz (571.4 kB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page