Skip to main content

A python implementation of the Tamura-Nei pairwise distance calculation

Project description

Tamura-Nei Distance Calculation with Python

Unit Tests Deployed Package

Overview

This repository contains a Python implementation of the Tamura-Nei (TN93) distance calculation. When provided with two sequences to compare, this software returns a distance value between 0 and 1 using the Tamura-Nei nucleotide substitution model. See Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees and NOTES for more information on the algorithm. This software has been developed by the Molecular Epidemiology and Bioinformatics Team in the Division of HIV/AIDS Prevention, NCHHSTP.

Usage

This tool is primarily meant as a library to be imported and used in custom analysis code, but can also be used to directly calculate the pairwise distances for a set of sequences in a FASTA file.

First, install using pip

pip install tn93

or clone this respository and copy src/tn93/tn93.py to your working directory. To calculate the distance between a pair of sequences,

from Bio import SeqIO
import tn93
# Read in a FASTA file to get sequences
seqs = [ x for x in SeqIo.parse("your_sequences.fasta", format="fasta") ]
tn93 = tn93.TN93()
distance = tn93.tn93_distance(seqs[0], seqs[1], "RESOLVE")

Alternatively, the module can be run from the command line and provided with a sequence file and match mode to produce a JSON file with the pairwise distances.

python tn93.py --input_file example_seqs.fasta --match_mode RESOLVE --output example_seqs_resolve_distance.json

There are four distinct match modes:

  • SKIP, which ignores ambiguous positions
  • GAPMM, which treats gaps appearing in only one sequence as mismatches
  • AVERAGE, which takes the average of the possible resolution values
  • RESOLVE, which tries to resolve the ambiguity to a single nucleotide, averages if that fails

Related documents

Public Domain Standard Notice

This repository constitutes a work of the United States Government and is not subject to domestic copyright protection under 17 USC § 105. This repository is in the public domain within the United States, and copyright and related rights in the work worldwide are waived through the CC0 1.0 Universal public domain dedication. All contributions to this repository will be released under the CC0 dedication. By submitting a pull request you are agreeing to comply with this waiver of copyright interest.

License Standard Notice

The repository utilizes code licensed under the terms of the Apache Software License and therefore is licensed under ASL v2 or later.

This source code in this repository is free: you can redistribute it and/or modify it under the terms of the Apache Software License version 2, or (at your option) any later version.

This source code in this repository is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Apache Software License for more details.

You should have received a copy of the Apache Software License along with this program. If not, see http://www.apache.org/licenses/LICENSE-2.0.html

The source code forked from other open source projects will inherit its license.

Privacy Standard Notice

This repository contains only non-sensitive, publicly available data and information. All material and community participation is covered by the Disclaimer and Code of Conduct. For more information about CDC's privacy policy, please visit http://www.cdc.gov/other/privacy.html.

Contributing Standard Notice

Anyone is encouraged to contribute to the repository by forking and submitting a pull request. (If you are new to GitHub, you might start with a basic tutorial.) By contributing to this project, you grant a world-wide, royalty-free, perpetual, irrevocable, non-exclusive, transferable license to all users under the terms of the Apache Software License v2 or later.

All comments, messages, pull requests, and other submissions received through CDC including this GitHub page may be subject to applicable federal law, including but not limited to the Federal Records Act, and may be archived. Learn more at http://www.cdc.gov/other/privacy.html.

Records Management Standard Notice

This repository is not a source of government records, but is a copy to increase collaboration and collaborative potential. All government records will be published through the CDC web site.

Additional Standard Notices

Please refer to CDC's Template Repository for more information about contributing to this repository, public domain notices and disclaimers, and code of conduct.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tn93-1.0.7.tar.gz (9.6 kB view details)

Uploaded Source

Built Distribution

tn93-1.0.7-py3-none-any.whl (7.3 kB view details)

Uploaded Python 3

File details

Details for the file tn93-1.0.7.tar.gz.

File metadata

  • Download URL: tn93-1.0.7.tar.gz
  • Upload date:
  • Size: 9.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for tn93-1.0.7.tar.gz
Algorithm Hash digest
SHA256 7867690c2c342b897b5981ab6b427f81b721f52bc12ff1aaebeaef8ef13fb213
MD5 bd90b675c55af3f5838965917302bdf4
BLAKE2b-256 6bd7c76ceae9ea500e72093146644a39a3cdeb69b0633aea012c2b9897b303b2

See more details on using hashes here.

File details

Details for the file tn93-1.0.7-py3-none-any.whl.

File metadata

  • Download URL: tn93-1.0.7-py3-none-any.whl
  • Upload date:
  • Size: 7.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for tn93-1.0.7-py3-none-any.whl
Algorithm Hash digest
SHA256 ad8114c25ef546c6b36fa715e774bdffbc44202e173d83742780378bd1816f2c
MD5 aa6e0931ebb9890389b85d54627c5cf6
BLAKE2b-256 612ed06fb079b1c5b135091954bbcb2e37b12471483549f6be402b704c4f183b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page