Skip to main content

No project description provided

Project description

tnkeeh (تنقيح) is an Arabic preprocessing library for python. It was designed using re for creating quick replacement expressions for several examples.

Installation

pip install tnkeeh

Features

  • Quick cleaning
  • Segmentation
  • Normalization
  • Data splitting

Examples

Data Cleaning

import tnkeeh as tn
tn.clean_data(file_path = 'data.txt', save_path = 'cleaned_data.txt',)

Arguments

  • segment uses farasa for segmentation.
  • remove_diacritics removes all diacritics.
  • remove_special_chars removes all sepcial chars.
  • remove_english removes english alphabets and digits.
  • normalize match digits that have the same writing but different encodings.
  • remove_tatweel tatweel character ـ is used a lot in arabic writing.
  • remove_repeated_chars remove characters that appear three times in sequence.
  • remove_html_elements remove html elements in the form with their attirbutes.
  • remove_links remove links.
  • remove_twitter_meta remove twitter mentions, links and hashtags.
  • remove_long_words remove words longer than 15 chars.
  • by_chunk read files by chunks with size chunk_size.

HuggingFace datasets

import tnkeeh as tn 
from datasets import load_dataset

dataset = load_dataset('metrec')

cleander = tn.Tnkeeh(remove_diacritics = True)
cleaned_dataset = cleander.clean_hf_dataset(dataset, 'text')

Data Splitting

Splits raw data into training and testing using the split_ratio

import tnkeeh as tn
tn.split_raw_data(data_path, split_ratio = 0.8)

Splits data and labels into training and testing using the split_ratio

import tnkeeh as tn
tn.split_classification_data(data_path, lbls_path, split_ratio = 0.8)

Splits input and target data with ration split_ratio. Commonly used for translation

tn.split_parallel_data('ar_data.txt','en_data.txt')

Data Reading

Read split data, depending if it was raw or classification

import tnkeeh as tn
train_data, test_data = tn.read_data(mode = 0)

Arguments

  • mode = 0 read raw data.
  • mode = 1 read labeled data.
  • mode = 2 read parallel data.

Contribution

This is an open source project where we encourage contributions from the community.

License

MIT license.

Citation

@misc{tnkeeh2020,
  author = {Zaid Alyafeai and Maged Saeed},
  title = {tkseem: A Preprocessing Library for Arabic.},
  year = {2020},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/ARBML/tnkeeh}}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tnkeeh-0.0.9.tar.gz (7.8 kB view details)

Uploaded Source

Built Distribution

tnkeeh-0.0.9-py3-none-any.whl (8.6 kB view details)

Uploaded Python 3

File details

Details for the file tnkeeh-0.0.9.tar.gz.

File metadata

  • Download URL: tnkeeh-0.0.9.tar.gz
  • Upload date:
  • Size: 7.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.8.2

File hashes

Hashes for tnkeeh-0.0.9.tar.gz
Algorithm Hash digest
SHA256 e030b17542a7db4e36c8647f6521f24c785334a4caf0f1398030501bd76d8a0e
MD5 edcb671cc9a2f2dc93359d3699de8f06
BLAKE2b-256 9d2618717cf5fbf40297fa4f1c0cffdc47d679bdbda9bce032f62300fefbe998

See more details on using hashes here.

File details

Details for the file tnkeeh-0.0.9-py3-none-any.whl.

File metadata

  • Download URL: tnkeeh-0.0.9-py3-none-any.whl
  • Upload date:
  • Size: 8.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.8.2

File hashes

Hashes for tnkeeh-0.0.9-py3-none-any.whl
Algorithm Hash digest
SHA256 dd0e086dca43533031e3fd7923d38e6dec62685a651a5127ce4494847fa930c2
MD5 80dbbc2314b7b816d50a1739dc4ae7cf
BLAKE2b-256 2dfa6c9e4abdfd0c7327919bb1ba93bf5bafe0f908a11b422f535a4df6bb0d79

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page