Skip to main content

Toy Neural Network Generator.

Project description

Github CI/CD

Toy Neural Network Generator

Installation

$ pip install tnng

Simple Model Generator

#!/usr/bin/env python
import torch
import torch.nn as nn
import torchex.nn as exnn
from tnng import Generator, MultiHeadLinkedListLayer

m = MultiHeadLinkedListLayer()
# all layers can be lazy evaluation.
m.append([exnn.Linear(64), exnn.Linear(128), exnn.Linear(256)])
m.append([nn.ReLU(), nn.ELU()])
m.append([exnn.Linear(16), exnn.Linear(32), exnn.Linear(64),])
m.append([nn.ReLU(), nn.ELU()])
m.append([exnn.Linear(10)])

g = Generator(m)

x = torch.randn(128, 256)

class Model(nn.Module):
    def __init__(self, idx=0):
        super(Model, self).__init__()
        self.model = nn.ModuleList([l[0] for l in g[idx]])

    def forward(self, x):
        for m in self.model:
            x = m(x)
        return x

m = Model(0)
o = m(x)

'''
ModuleList(
  (0): Linear(in_features=256, out_features=64, bias=True)
  (1): ReLU()
  (2): Linear(in_features=64, out_features=16, bias=True)
  (3): ReLU()
  (4): Linear(in_features=16, out_features=10, bias=True)
)
'''

Multimodal Model Generator

#!/usr/bin/env python
import torch
import torch.nn as nn
import torchex.nn as exnn
from tnng import Generator, MultiHeadLinkedListLayer

m = MultiHeadLinkedListLayer()
m1 = MultiHeadLinkedListLayer()
# all layers can be lazy evaluation.
m.append([exnn.Linear(64), exnn.Linear(128), exnn.Linear(256)])
m.append([nn.ReLU(), nn.ELU()])
m.append([exnn.Linear(16), exnn.Linear(32), exnn.Linear(64),])
m.append([nn.ReLU(), nn.ELU()])

m1.append([exnn.Conv2d(16, 1), exnn.Conv2d(32, 1), exnn.Conv2d(64, 1)])
m1.append([nn.MaxPool2d(2), nn.AvgPool2d(2)])
m1.append([nn.ReLU(), nn.ELU(), nn.Identity()])
m1.append([exnn.Conv2d(32, 1), exnn.Conv2d(64, 1), exnn.Conv2d(128, 1)])
m1.append([nn.MaxPool2d(2), nn.AvgPool2d(2)])
m1.append([exnn.Flatten(),])

m = m + m1
m.append([exnn.Linear(128)])
m.append([nn.ReLU(), nn.ELU(), nn.Identity()])
m.append([exnn.Linear(10)])


g = Generator(m)
class Model(nn.Module):
    def __init__(self, idx=0):
        super(Model, self).__init__()
        self.model = g[idx]
        for layers in self.model:
            for layer in layers:
                self.add_module(f'{layer}', layer)

    def forward(self, x, img):
        for m in self.model:
            if len(m) == 2:
                if m[0] is not None:
                    x = m[0](x)
                img = m[1](img)
            elif len(m) == 1 and m[0] is None:
                x = torch.cat((x, img), 1)
            else:
                x = m[0](x)
        return x

x = torch.randn(128, 256)
img = torch.randn(128, 3, 28, 28)
m = Model()
o = m(x, img)
print(o.shape)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tnng-0.4.1.tar.gz (5.1 kB view hashes)

Uploaded source

Built Distribution

tnng-0.4.1-py2.py3-none-any.whl (5.4 kB view hashes)

Uploaded py2 py3

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page