Machine Learning Datasets module
Project description
TNO Quantum: Datasets
TNO Quantum provides generic software components aimed at facilitating the development of quantum applications.
The tno.quantum.ml.datasets
package wraps some of the functionality of the sklearn.datasets.
This package is used for testing the tno.quantum.ml
classifiers and clustering algorithms in an easy, reproducible and consistent way.
Limitations in (end-)use: the content of this software package may solely be used for applications that comply with international export control laws.
Documentation
Documentation of the tno.quantum.ml.datasets
package can be found here.
Install
Easily install the tno.quantum.ml.datasets
package using pip:
$ python -m pip install tno.quantum.ml.datasets
If you wish to run the tests you can use:
$ python -m pip install 'tno.quantum.ml.datasets[tests]'
Usage
Here's an example of how the datasets
package can be used to load an iris dataset.
from tno.quantum.ml.datasets import get_iris_dataset
X_train, y_train, X_val, y_val = get_iris_dataset()
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file tno.quantum.ml.datasets-1.2.1.tar.gz
.
File metadata
- Download URL: tno.quantum.ml.datasets-1.2.1.tar.gz
- Upload date:
- Size: 10.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 331532f4c3cbe353bfb3a57cb163880190969eef750c00ebf3c951748ce35c38 |
|
MD5 | bcf27eab7206cd189ea96435dd8a3e74 |
|
BLAKE2b-256 | 95b40243a39c36e521a71f6cbac5b0a558b6d409d138492e1bca78888b2c0b19 |
File details
Details for the file tno.quantum.ml.datasets-1.2.1-py3-none-any.whl
.
File metadata
- Download URL: tno.quantum.ml.datasets-1.2.1-py3-none-any.whl
- Upload date:
- Size: 11.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ecf7a843418bba7ee0329e727f3b512a7329ccf96aabc5ed5e4dd92bc9cdffa4 |
|
MD5 | 6133d147e9c48463dad46a880076476b |
|
BLAKE2b-256 | 936ba96443f74e254d6bff96b1215bdf00eecf8e67151c8d80cd6b1c2782fa93 |