Skip to main content

Toad is dedicated to facilitating model development process, especially for a scorecard.

Project description

TOAD

PyPi version Python version Build Status Downloads Status

Toad is dedicated to facilitating model development process, especially for a scorecard. It provides intuitive functions of the entire process, from EDA, feature engineering and selection etc. to results validation and scorecard transformation. Its key functionality streamlines the most critical and time-consuming process such as feature selection and fine binning.

Toad 是专为工业界模型开发设计的Python工具包,特别针对评分卡的开发。Toad 的功能覆盖了建模全流程,从 EDA、特征工程、特征筛选 到 模型验证和评分卡转化。Toad 的主要功能极大简化了建模中最重要最费时的流程,即特征筛选和分箱。

Install and Upgrade · 安装与升级

Pip

pip install toad # to install
pip install -U toad # to upgrade

Conda

conda install toad --channel conda-forge # to install
conda install -U toad --channel conda-forge # to upgrade

Source code

python setup.py install

Key features · 主要功能

The following showcases some of the most popular features of toad, for more detailed demonstrations and user guidance, please refer to the tutorials.

以下部分简单介绍了toad最受欢迎的一些功能,具体的使用方法和使用教程,请详见文档部分。

  • Simple IV calculation for all features · 一键算IV:
toad.quality(data, 'target', indicators = ['iv'])
  • Preliminary selection based on criteria · 根据特定条件的初步变量筛选;
  • and stepwise feature selection (with optimised algorithm) · 优化过的逐步回归:
selected_data = toad.selection.select(data,target = 'target', empty = 0.5, iv = 0.02, corr = 0.7, return_drop=True, exclude=['ID','month'])

final_data = toad.selection.stepwise(data_woe,target = 'target', estimator='ols', direction = 'both', criterion = 'aic', exclude = to_drop)
  • Reliable fine binning with visualisation · 分箱及可视化:
# Chi-squared fine binning
c = toad.transform.Combiner()
c.fit(data_selected.drop(to_drop, axis=1), y = 'target', method = 'chi', min_samples = 0.05) 
print(c.export())

# Visualisation to check binning results 
col = 'feature_name'
bin_plot(c.transform(data_selected[[col,'target']], labels=True), x=col, target='target')
  • Intuitive model results presentation · 模型结果展示:
toad.metrics.KS_bucket(pred_proba, final_data['target'], bucket=10, method = 'quantile')
  • One-click scorecard transformation · 评分卡转化:
card = toad.ScoreCard(
    combiner = c,
    transer = transer,
    class_weight = 'balanced',
    C=0.1,
    base_score = 600,
    base_odds = 35 ,
    pdo = 60,
    rate = 2
)

card.fit(final_data[col], final_data['target'])
print(card.export())

Documents · 文档

Community · 社区

We welcome public feedback and new PRs. We hold a WeChat group for questions and suggestions.

欢迎各位提PR,同时我们有toad使用交流的微信群,欢迎询问加群。

Contributors

Contributors


Dedicated by The ESC Team

Project details


Release history Release notifications | RSS feed

This version

0.1.4

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

toad-0.1.4.tar.gz (14.1 MB view details)

Uploaded Source

Built Distributions

toad-0.1.4-cp312-cp312-win_amd64.whl (14.2 MB view details)

Uploaded CPython 3.12 Windows x86-64

toad-0.1.4-cp311-cp311-win_amd64.whl (14.2 MB view details)

Uploaded CPython 3.11 Windows x86-64

toad-0.1.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (15.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

toad-0.1.4-cp310-cp310-win_amd64.whl (14.2 MB view details)

Uploaded CPython 3.10 Windows x86-64

toad-0.1.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (15.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

toad-0.1.4-cp39-cp39-win_amd64.whl (14.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

toad-0.1.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (15.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

toad-0.1.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (15.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

toad-0.1.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (15.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

File details

Details for the file toad-0.1.4.tar.gz.

File metadata

  • Download URL: toad-0.1.4.tar.gz
  • Upload date:
  • Size: 14.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for toad-0.1.4.tar.gz
Algorithm Hash digest
SHA256 d8825cd141a48a0f742b7692e630cd5a6949cec8cb7bfef4fc9ff959e2401870
MD5 a1e6145e644c9587dde8973d055d5481
BLAKE2b-256 12b42b8bffe01244e6d843d4b5fac8eae159dedf7c3c7eaefa82443b17cdbc1f

See more details on using hashes here.

File details

Details for the file toad-0.1.4-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: toad-0.1.4-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 14.2 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for toad-0.1.4-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 0724d2f685fd8e4b3ef1fc357802c38be786c96d9940ba2abfaa7609a7537465
MD5 16e94056900611a09890f39979c8a683
BLAKE2b-256 049d017324b66bbb3e01ea3a3629a1004b6221ec0a4920942d6aeea1cb38bbbd

See more details on using hashes here.

File details

Details for the file toad-0.1.4-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: toad-0.1.4-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 14.2 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for toad-0.1.4-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 f25d76f73975c01b926e9bc7aaa1e199e7e8877b533880981a1419d347b39550
MD5 4d1316b3d3f446a841e3d0e4673ae508
BLAKE2b-256 92a778e195779e2f1feeca1d522a0d509c439d5a3e84141a9c506531733c8904

See more details on using hashes here.

File details

Details for the file toad-0.1.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for toad-0.1.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1f478ca60c3bb8810408050cd7f09b69739e598da5e6b7d7a4766fea9212e98e
MD5 b205cadf5ec992a52880ad06d37be342
BLAKE2b-256 d25ad2abb287fd1aa2719bb1cfc0ce14e5e9feee6f3c48270a888b55ad6e72c1

See more details on using hashes here.

File details

Details for the file toad-0.1.4-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: toad-0.1.4-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 14.2 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for toad-0.1.4-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 31df5dad9d0b31198e136f62309f4fa9113328b48653dc22981b7be058d0414c
MD5 4981fb7d281ae3e9f4cd204256c79d19
BLAKE2b-256 db11edb32cbce6a867cff88cdf083c26dd38e69ac2295ad1a1e56e6c1e578708

See more details on using hashes here.

File details

Details for the file toad-0.1.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for toad-0.1.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ebe24e7e5c2de3def266d595a42ef0f222f489d0f280962b54a70e85829615e6
MD5 0783ef6122428ccf01ffc5418cbff055
BLAKE2b-256 4d2414d05aad47a3523170bce603ce5f703028808f580552bd64f2a4e5ef7f22

See more details on using hashes here.

File details

Details for the file toad-0.1.4-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: toad-0.1.4-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 14.3 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for toad-0.1.4-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 9eca1f0e6ded3096503e18edd9547dbf7ef97e530b902c7752d1712cc47a04db
MD5 56689b8a3cceb43bcf47e6b54a923f3e
BLAKE2b-256 ed5712a19e59117804e43a27ac6d82f3393666dc1a27e5a9d47f2c71988c7e2f

See more details on using hashes here.

File details

Details for the file toad-0.1.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for toad-0.1.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 10a8dbdc5113c61ddf81de56e935270f18ef86d2da33d290ea79231e31aee328
MD5 a4d1dd4738c0e91fe2062a7364729667
BLAKE2b-256 3f9716b523660c17adbe926f44e7029716e0f2d9ce30adbf20564a80624f25fd

See more details on using hashes here.

File details

Details for the file toad-0.1.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for toad-0.1.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b9a4130832214d5b3b1d0d1ea05680b7552f48a8f53d2589a7b997442aff9aaa
MD5 c7bbfc0f086f89569cf63c10609f0c44
BLAKE2b-256 97c4421bf4287f306dce55caf175603771ebf71978713853e789546875f78e39

See more details on using hashes here.

File details

Details for the file toad-0.1.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for toad-0.1.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ca0ec84a1f5ad6d039f0eda42868d7902198d897b06759f1bcf553506f62fca3
MD5 48e0a05ff863de3b1f42fa814d31bb2c
BLAKE2b-256 a08329b90dc2de454305c588136a1d190608c9310652ade4e63d945fd632f845

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page