Skip to main content

markdownn too to create table of content from jupyter notebooks

Project description

# Toci

Solring is an easy-to-use import tool from solr to local storage. By supporting various options we can create custom
queries and save from a running Solr server to a file.

## How it works

```
$ pip install toci==0.0.1

$ solring --help
usage: Solring.py [-h] [--version] --url URL [--output OUTPUT]
[--save_format {csv,txt}] --core CORE [--rows ROWS] [-fl FL]
[-q Q] [-fq FQ] [--score] [--qt QT]
{group} ...

optional arguments:
-h, --help show this help message and exit
--version show program's version number and exit
--url URL, -u URL The host:port of the running solr.
--output OUTPUT, -o OUTPUT
Output file name.
--save_format {csv,txt}, -sf {csv,txt}
File type of saved records. Default is txt.
--core CORE, -c CORE The core/collection in solr.
--rows ROWS, -r ROWS The number of row numbers returned. By default, Solr
returns 5 batches at a time to save records.
-fl FL Field list to retrieve. By default, Solr returns the
id field.
-q Q Search query. By default, Solr returns all records.
-fq FQ Filter queries.
--score Learn score of each record in a score field.
--qt QT solr request handle to query on, default is '/select'.

group command:
{group} group help
```

The group command parameters:

```
$ solring group --help
usage: Solring.py group [-h] --group_fl GROUP_FL --group_agg
{mean,min,max,count} --group_column GROUP_COLUMN

optional arguments:
-h, --help show this help message and exit
--group_fl GROUP_FL The field(s) we want to use to group by.
--group_agg {mean,min,max,count}
Aggregation functions to use in group by. Default is
count.
--group_column GROUP_COLUMN
The field(s) where we want to aggregate.
```

Create a custom query where the query we search for is 'boat', we have two filter queries, and we only need to know
their ids and titles as follows:

```
solring --url http://127.0.0.1:8983\
-c boats \
-fq "cabin:[6 TO *]" \
-fq harbors:marmaris \
-q boat \
-fl id,title,boat_size,group_id

$ ls
output.txt
```

Let's now aggregate the above request with group options. We can learn the min and max of boats_size of each group:

```
solring --url http://127.0.0.1:8983\
-c boats \
-fq "cabin:[6 TO *]" \
-fq harbors:marmaris \
-q boat \
-r 100 \
-fl id,title,boat_size,group_id \
-o groupby_boats \
group --group_agg min --group_agg max --group_column boat_size --group_fl group_id

$ ls æ
groupby_boats.txt
```
## LICENSE

MIT




Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

toci-0.0.1.tar.gz (4.6 kB view details)

Uploaded Source

Built Distributions

toci-0.0.1-py3.9.egg (6.2 kB view details)

Uploaded Source

toci-0.0.1-py3-none-any.whl (4.8 kB view details)

Uploaded Python 3

File details

Details for the file toci-0.0.1.tar.gz.

File metadata

  • Download URL: toci-0.0.1.tar.gz
  • Upload date:
  • Size: 4.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.6

File hashes

Hashes for toci-0.0.1.tar.gz
Algorithm Hash digest
SHA256 01fdbc0b763c545c52b183d415d0c820787d9f281348f7b8d84edf9246a0caa7
MD5 a31b74728b0d83aa72640ad2c4bdb925
BLAKE2b-256 b4d780a4008e51317e62f0d695053e8d805a63811f82642e3e2ec51f4e28afdb

See more details on using hashes here.

File details

Details for the file toci-0.0.1-py3.9.egg.

File metadata

  • Download URL: toci-0.0.1-py3.9.egg
  • Upload date:
  • Size: 6.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.6

File hashes

Hashes for toci-0.0.1-py3.9.egg
Algorithm Hash digest
SHA256 90673e7630e876a1de1aef4e386ee1917c6d6f7796080aa8373869b42ba63584
MD5 0dccf20049266f0eeff726aca405d540
BLAKE2b-256 d4fcb878b3486d66ab94a9af3d02f528616c99e2c2503545d1bc92c33519eadb

See more details on using hashes here.

File details

Details for the file toci-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: toci-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 4.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.6

File hashes

Hashes for toci-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 842d16b1a982060191c2423c54fe6dc52ef43ae7f8ca0b1698525286f741c888
MD5 2f4363fb39afd8c08c2d6774fda7f489
BLAKE2b-256 50eef1d8f92f9acaeca5bb12b5c15d6e6b9369ce9cccbef9e5cf7b6d0ee00a5a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page