Python client for Together's Cloud Platform!
Project description
Together Python API library
The Together Python API Library is the official Python client for Together's API platform, providing a convenient way for interacting with the REST APIs and enables easy integrations with Python 3.8+ applications with easy to use synchronous and asynchronous clients.
Installation
🚧 The Library was rewritten in v1.0.0 released in April of 2024. There were significant changes made.
To install Together Python Library from PyPI, simply run:
pip install --upgrade together
Setting up API Key
🚧 You will need to create an account with Together.ai to obtain a Together API Key.
Once logged in to the Together Playground, you can find available API keys in this settings page.
Setting environment variable
export TOGETHER_API_KEY=xxxxx
Using the client
from together import Together
client = Together(api_key="xxxxx")
This repo contains both a Python Library and a CLI. We'll demonstrate how to use both below.
Usage – Python Client
Chat Completions
import os
from together import Together
client = Together(api_key=os.environ.get("TOGETHER_API_KEY"))
response = client.chat.completions.create(
model="mistralai/Mixtral-8x7B-Instruct-v0.1",
messages=[{"role": "user", "content": "tell me about new york"}],
)
print(response.choices[0].message.content)
Streaming
import os
from together import Together
client = Together(api_key=os.environ.get("TOGETHER_API_KEY"))
stream = client.chat.completions.create(
model="mistralai/Mixtral-8x7B-Instruct-v0.1",
messages=[{"role": "user", "content": "tell me about new york"}],
stream=True,
)
for chunk in stream:
print(chunk.choices[0].delta.content or "", end="", flush=True)
Async usage
import os, asyncio
from together import AsyncTogether
async_client = AsyncTogether(api_key=os.environ.get("TOGETHER_API_KEY"))
messages = [
"What are the top things to do in San Francisco?",
"What country is Paris in?",
]
async def async_chat_completion(messages):
async_client = AsyncTogether(api_key=os.environ.get("TOGETHER_API_KEY"))
tasks = [
async_client.chat.completions.create(
model="mistralai/Mixtral-8x7B-Instruct-v0.1",
messages=[{"role": "user", "content": message}],
)
for message in messages
]
responses = await asyncio.gather(*tasks)
for response in responses:
print(response.choices[0].message.content)
asyncio.run(async_chat_completion(messages))
Completions
Completions are for code and language models shown here. Below, a code model example is shown.
import os
from together import Together
client = Together(api_key=os.environ.get("TOGETHER_API_KEY"))
response = client.completions.create(
model="codellama/CodeLlama-34b-Python-hf",
prompt="Write a Next.js component with TailwindCSS for a header component.",
max_tokens=200,
)
print(response.choices[0].text)
Streaming
import os
from together import Together
client = Together(api_key=os.environ.get("TOGETHER_API_KEY"))
stream = client.completions.create(
model="codellama/CodeLlama-34b-Python-hf",
prompt="Write a Next.js component with TailwindCSS for a header component.",
stream=True,
)
for chunk in stream:
print(chunk.choices[0].delta.content or "", end="", flush=True)
Async usage
import os, asyncio
from together import AsyncTogether
async_client = AsyncTogether(api_key=os.environ.get("TOGETHER_API_KEY"))
prompts = [
"Write a Next.js component with TailwindCSS for a header component.",
"Write a python function for the fibonacci sequence",
]
async def async_chat_completion(prompts):
tasks = [
async_client.completions.create(
model="codellama/CodeLlama-34b-Python-hf",
prompt=prompt,
)
for prompt in prompts
]
responses = await asyncio.gather(*tasks)
for response in responses:
print(response.choices[0].text)
asyncio.run(async_chat_completion(prompts))
Image generation
import os
from together import Together
client = Together(api_key=os.environ.get("TOGETHER_API_KEY"))
response = client.images.generate(
prompt="space robots",
model="stabilityai/stable-diffusion-xl-base-1.0",
steps=10,
n=4,
)
print(response.data[0].b64_json)
Embeddings
from typing import List
from together import Together
client = Together(api_key=os.environ.get("TOGETHER_API_KEY"))
def get_embeddings(texts: List[str], model: str) -> List[List[float]]:
texts = [text.replace("\n", " ") for text in texts]
outputs = client.embeddings.create(model=model, input = texts)
return [outputs.data[i].embedding for i in range(len(texts))]
input_texts = ['Our solar system orbits the Milky Way galaxy at about 515,000 mph']
embeddings = get_embeddings(input_texts, model='togethercomputer/m2-bert-80M-8k-retrieval')
print(embeddings)
Files
The files API is used for fine-tuning and allows developers to upload data to fine-tune on. It also has several methods to list all files, retrive files, and delete files. Please refer to our fine-tuning docs here.
import os
from together import Together
client = Together(api_key=os.environ.get("TOGETHER_API_KEY"))
client.files.upload(file="somedata.jsonl") # uploads a file
client.files.list() # lists all uploaded files
client.files.retrieve(id="file-d0d318cb-b7d9-493a-bd70-1cfe089d3815") # retrieves a specific file
client.files.retrieve_content(id="file-d0d318cb-b7d9-493a-bd70-1cfe089d3815") # retrieves content of a specific file
client.files.delete(id="file-d0d318cb-b7d9-493a-bd70-1cfe089d3815") # deletes a file
Fine-tunes
The finetune API is used for fine-tuning and allows developers to create finetuning jobs. It also has several methods to list all jobs, retrive statuses and get checkpoints. Please refer to our fine-tuning docs here.
import os
from together import Together
client = Together(api_key=os.environ.get("TOGETHER_API_KEY"))
client.fine_tuning.create(
training_file = 'file-d0d318cb-b7d9-493a-bd70-1cfe089d3815',
model = 'mistralai/Mixtral-8x7B-Instruct-v0.1',
n_epochs = 3,
n_checkpoints = 1,
batch_size = "max",
learning_rate = 1e-5,
suffix = 'my-demo-finetune',
wandb_api_key = '1a2b3c4d5e.......',
)
client.fine_tuning.list() # lists all fine-tuned jobs
client.fine_tuning.retrieve(id="ft-c66a5c18-1d6d-43c9-94bd-32d756425b4b") # retrieves information on finetune event
client.fine_tuning.cancel(id="ft-c66a5c18-1d6d-43c9-94bd-32d756425b4b") # Cancels a fine-tuning job
client.fine_tuning.list_events(id="ft-c66a5c18-1d6d-43c9-94bd-32d756425b4b") # Lists events of a fine-tune job
client.fine_tuning.download(id="ft-c66a5c18-1d6d-43c9-94bd-32d756425b4b") # downloads compressed fine-tuned model or checkpoint to local disk
Models
This lists all the models that Together supports.
import os
from together import Together
client = Together(api_key=os.environ.get("TOGETHER_API_KEY"))
models = client.models.list()
for model in models:
print(model)
Usage – CLI
Chat Completions
together chat.completions \
--message "system" "You are a helpful assistant named Together" \
--message "user" "What is your name?" \
--model mistralai/Mixtral-8x7B-Instruct-v0.1
The Chat Completions CLI enables streaming tokens to stdout by default. To disable streaming, use --no-stream
.
Completions
together completions \
"Large language models are " \
--model mistralai/Mixtral-8x7B-v0.1 \
--max-tokens 512 \
--stop "."
The Completions CLI enables streaming tokens to stdout by default. To disable streaming, use --no-stream
.
Image Generations
together images generate \
"space robots" \
--model stabilityai/stable-diffusion-xl-base-1.0 \
--n 4
The image is opened in the default image viewer by default. To disable this, use --no-show
.
Files
# Help
together files --help
# Check file
together files check example.jsonl
# Upload file
together files upload example.jsonl
# List files
together files list
# Retrieve file metadata
together files retrieve file-6f50f9d1-5b95-416c-9040-0799b2b4b894
# Retrieve file content
together files retrieve-content file-6f50f9d1-5b95-416c-9040-0799b2b4b894
# Delete remote file
together files delete file-6f50f9d1-5b95-416c-9040-0799b2b4b894
Fine-tuning
# Help
together fine-tuning --help
# Create fine-tune job
together fine-tuning create \
--model togethercomputer/llama-2-7b-chat \
--training-file file-711d8724-b3e3-4ae2-b516-94841958117d
# List fine-tune jobs
together fine-tuning list
# Retrieve fine-tune job details
together fine-tuning retrieve ft-c66a5c18-1d6d-43c9-94bd-32d756425b4b
# List fine-tune job events
together fine-tuning list-events ft-c66a5c18-1d6d-43c9-94bd-32d756425b4b
# Cancel running job
together fine-tuning cancel ft-c66a5c18-1d6d-43c9-94bd-32d756425b4b
# Download fine-tuned model weights
together fine-tuning download ft-c66a5c18-1d6d-43c9-94bd-32d756425b4b
Models
# Help
together models --help
# List models
together models list
Contributing
Refer to the Contributing Guide
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file together-1.3.2.tar.gz
.
File metadata
- Download URL: together-1.3.2.tar.gz
- Upload date:
- Size: 49.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a84759cfd68bfeed1ea5f621507005da17461b760d954d8a54609e8246063aa1 |
|
MD5 | 738cc1c587307197e8c7eb49f54896fe |
|
BLAKE2b-256 | 49bbd0d3324f9c76ff57c5f7c8f6ed2f45e1e3c839ac7c11c61ae384f82ac241 |
File details
Details for the file together-1.3.2-py3-none-any.whl
.
File metadata
- Download URL: together-1.3.2-py3-none-any.whl
- Upload date:
- Size: 68.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ff69df5dfa82004895d85cb95ce203c18a47f5dd44ba7819ab98489eecc3cd7d |
|
MD5 | db3c448ec814b3528a42661f426f595a |
|
BLAKE2b-256 | e8bea7f4237e493eb81c95bc5ee205bc4ab49954ab4258ef8d61e8f0fe9a22f5 |