Skip to main content

Python client for Together's Cloud Platform!

Project description

Together Python API library

PyPI version Discord Twitter

The Together Python API Library is the official Python client for Together's API platform, providing a convenient way for interacting with the REST APIs and enables easy integrations with Python 3.8+ applications with easy to use synchronous and asynchronous clients.

Installation

🚧 The Library was rewritten in v1.0.0 released in April of 2024. There were significant changes made.

To install Together Python Library from PyPI, simply run:

pip install --upgrade together

Setting up API Key

🚧 You will need to create an account with Together.ai to obtain a Together API Key.

Once logged in to the Together Playground, you can find available API keys in this settings page.

Setting environment variable

export TOGETHER_API_KEY=xxxxx

Using the client

from together import Together

client = Together(api_key="xxxxx")

This repo contains both a Python Library and a CLI. We'll demonstrate how to use both below.

Usage – Python Client

Chat Completions

import os
from together import Together

client = Together(api_key=os.environ.get("TOGETHER_API_KEY"))

response = client.chat.completions.create(
    model="mistralai/Mixtral-8x7B-Instruct-v0.1",
    messages=[{"role": "user", "content": "tell me about new york"}],
)
print(response.choices[0].message.content)

Streaming

import os
from together import Together

client = Together(api_key=os.environ.get("TOGETHER_API_KEY"))
stream = client.chat.completions.create(
    model="mistralai/Mixtral-8x7B-Instruct-v0.1",
    messages=[{"role": "user", "content": "tell me about new york"}],
    stream=True,
)

for chunk in stream:
    print(chunk.choices[0].delta.content or "", end="", flush=True)

Async usage

import os, asyncio
from together import AsyncTogether

async_client = AsyncTogether(api_key=os.environ.get("TOGETHER_API_KEY"))
messages = [
    "What are the top things to do in San Francisco?",
    "What country is Paris in?",
]

async def async_chat_completion(messages):
    async_client = AsyncTogether(api_key=os.environ.get("TOGETHER_API_KEY"))
    tasks = [
        async_client.chat.completions.create(
            model="mistralai/Mixtral-8x7B-Instruct-v0.1",
            messages=[{"role": "user", "content": message}],
        )
        for message in messages
    ]
    responses = await asyncio.gather(*tasks)

    for response in responses:
        print(response.choices[0].message.content)

asyncio.run(async_chat_completion(messages))

Completions

Completions are for code and language models shown here. Below, a code model example is shown.

import os
from together import Together

client = Together(api_key=os.environ.get("TOGETHER_API_KEY"))

response = client.completions.create(
    model="codellama/CodeLlama-34b-Python-hf",
    prompt="Write a Next.js component with TailwindCSS for a header component.",
    max_tokens=200,
)
print(response.choices[0].text)

Streaming

import os
from together import Together

client = Together(api_key=os.environ.get("TOGETHER_API_KEY"))
stream = client.completions.create(
    model="codellama/CodeLlama-34b-Python-hf",
    prompt="Write a Next.js component with TailwindCSS for a header component.",
    stream=True,
)

for chunk in stream:
    print(chunk.choices[0].delta.content or "", end="", flush=True)

Async usage

import os, asyncio
from together import AsyncTogether

async_client = AsyncTogether(api_key=os.environ.get("TOGETHER_API_KEY"))
prompts = [
    "Write a Next.js component with TailwindCSS for a header component.",
    "Write a python function for the fibonacci sequence",
]

async def async_chat_completion(prompts):
    tasks = [
        async_client.completions.create(
            model="codellama/CodeLlama-34b-Python-hf",
            prompt=prompt,
        )
        for prompt in prompts
    ]
    responses = await asyncio.gather(*tasks)

    for response in responses:
        print(response.choices[0].text)

asyncio.run(async_chat_completion(prompts))

Image generation

import os
from together import Together

client = Together(api_key=os.environ.get("TOGETHER_API_KEY"))

response = client.images.generate(
    prompt="space robots",
    model="stabilityai/stable-diffusion-xl-base-1.0",
    steps=10,
    n=4,
)
print(response.data[0].b64_json)

Embeddings

from typing import List
from together import Together

client = Together(api_key=os.environ.get("TOGETHER_API_KEY"))

def get_embeddings(texts: List[str], model: str) -> List[List[float]]:
    texts = [text.replace("\n", " ") for text in texts]
    outputs = client.embeddings.create(model=model, input = texts)
    return [outputs.data[i].embedding for i in range(len(texts))]

input_texts = ['Our solar system orbits the Milky Way galaxy at about 515,000 mph']
embeddings = get_embeddings(input_texts, model='togethercomputer/m2-bert-80M-8k-retrieval')

print(embeddings)

Files

The files API is used for fine-tuning and allows developers to upload data to fine-tune on. It also has several methods to list all files, retrive files, and delete files. Please refer to our fine-tuning docs here.

import os
from together import Together

client = Together(api_key=os.environ.get("TOGETHER_API_KEY"))

client.files.upload(file="somedata.jsonl") # uploads a file
client.files.list() # lists all uploaded files
client.files.retrieve(id="file-d0d318cb-b7d9-493a-bd70-1cfe089d3815") # retrieves a specific file
client.files.retrieve_content(id="file-d0d318cb-b7d9-493a-bd70-1cfe089d3815") # retrieves content of a specific file
client.files.delete(id="file-d0d318cb-b7d9-493a-bd70-1cfe089d3815") # deletes a file

Fine-tunes

The finetune API is used for fine-tuning and allows developers to create finetuning jobs. It also has several methods to list all jobs, retrive statuses and get checkpoints. Please refer to our fine-tuning docs here.

import os
from together import Together

client = Together(api_key=os.environ.get("TOGETHER_API_KEY"))

client.fine_tuning.create(
  training_file = 'file-d0d318cb-b7d9-493a-bd70-1cfe089d3815',
  model = 'mistralai/Mixtral-8x7B-Instruct-v0.1',
  n_epochs = 3,
  n_checkpoints = 1,
  batch_size = "max",
  learning_rate = 1e-5,
  suffix = 'my-demo-finetune',
  wandb_api_key = '1a2b3c4d5e.......',
)
client.fine_tuning.list() # lists all fine-tuned jobs
client.fine_tuning.retrieve(id="ft-c66a5c18-1d6d-43c9-94bd-32d756425b4b") # retrieves information on finetune event
client.fine_tuning.cancel(id="ft-c66a5c18-1d6d-43c9-94bd-32d756425b4b") # Cancels a fine-tuning job
client.fine_tuning.list_events(id="ft-c66a5c18-1d6d-43c9-94bd-32d756425b4b") #  Lists events of a fine-tune job
client.fine_tuning.download(id="ft-c66a5c18-1d6d-43c9-94bd-32d756425b4b") # downloads compressed fine-tuned model or checkpoint to local disk

Models

This lists all the models that Together supports.

import os
from together import Together

client = Together(api_key=os.environ.get("TOGETHER_API_KEY"))

models = client.models.list()

for model in models:
    print(model)

Usage – CLI

Chat Completions

together chat.completions \
  --message "system" "You are a helpful assistant named Together" \
  --message "user" "What is your name?" \
  --model mistralai/Mixtral-8x7B-Instruct-v0.1

The Chat Completions CLI enables streaming tokens to stdout by default. To disable streaming, use --no-stream.

Completions

together completions \
  "Large language models are " \
  --model mistralai/Mixtral-8x7B-v0.1 \
  --max-tokens 512 \
  --stop "."

The Completions CLI enables streaming tokens to stdout by default. To disable streaming, use --no-stream.

Image Generations

together images generate \
  "space robots" \
  --model stabilityai/stable-diffusion-xl-base-1.0 \
  --n 4

The image is opened in the default image viewer by default. To disable this, use --no-show.

Files

# Help
together files --help

# Check file
together files check example.jsonl

# Upload file
together files upload example.jsonl

# List files
together files list

# Retrieve file metadata
together files retrieve file-6f50f9d1-5b95-416c-9040-0799b2b4b894

# Retrieve file content
together files retrieve-content file-6f50f9d1-5b95-416c-9040-0799b2b4b894

# Delete remote file
together files delete file-6f50f9d1-5b95-416c-9040-0799b2b4b894

Fine-tuning

# Help
together fine-tuning --help

# Create fine-tune job
together fine-tuning create \
  --model togethercomputer/llama-2-7b-chat \
  --training-file file-711d8724-b3e3-4ae2-b516-94841958117d

# List fine-tune jobs
together fine-tuning list

# Retrieve fine-tune job details
together fine-tuning retrieve ft-c66a5c18-1d6d-43c9-94bd-32d756425b4b

# List fine-tune job events
together fine-tuning list-events ft-c66a5c18-1d6d-43c9-94bd-32d756425b4b

# Cancel running job
together fine-tuning cancel ft-c66a5c18-1d6d-43c9-94bd-32d756425b4b

# Download fine-tuned model weights
together fine-tuning download ft-c66a5c18-1d6d-43c9-94bd-32d756425b4b

Models

# Help
together models --help

# List models
together models list

Contributing

Refer to the Contributing Guide

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

together-1.3.3.tar.gz (49.2 kB view details)

Uploaded Source

Built Distribution

together-1.3.3-py3-none-any.whl (68.1 kB view details)

Uploaded Python 3

File details

Details for the file together-1.3.3.tar.gz.

File metadata

  • Download URL: together-1.3.3.tar.gz
  • Upload date:
  • Size: 49.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for together-1.3.3.tar.gz
Algorithm Hash digest
SHA256 9e1ebeb324214d05ab2eff090e27445a6355c34fe92e2459ec6721a9eb5d5f9f
MD5 03bff88fe825e3f3b0abae21e386475d
BLAKE2b-256 cc0b0491478fe82415648968e6d6d053e131585817725d7d73b450e06c5fe297

See more details on using hashes here.

File details

Details for the file together-1.3.3-py3-none-any.whl.

File metadata

  • Download URL: together-1.3.3-py3-none-any.whl
  • Upload date:
  • Size: 68.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for together-1.3.3-py3-none-any.whl
Algorithm Hash digest
SHA256 6dca68dab4e4b30dd56714a87a3c5b8a9572753ca084450c660046331348f3cb
MD5 c9e1bca0c81b89366aa53bb2d48da457
BLAKE2b-256 334992026c5b7855c855fff29e3c4c1023b251f5d41720671ce63e6b9f4c3991

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page