Skip to main content

Utility package for hash generation and database operations.

Project description

tommytomato_operation_utils

Utility package for hash generation, database operations, and logging.

Installation

pip install tommytomato_operation_utils

Deploying a new version (Only Admin)

Clone repository locally

git clone git@github.com:TommyTomato-BV/ops-python-tommytomato-utils.git

Installed required libraries to push to PyPi

pip install twine setuptools wheel build
python setup.py sdist bdist_wheel

Create distribution files

python -m build

Check distribution files before uploading:

twine check dist/*

Upload

twine upload --repository-url https://test.pypi.org/legacy/ dist/*

Modules

Hashing Client

The Hashing Client is used to generate hashes from lists of strings or specific columns of a DataFrame.

Usage:

from tommytomato_utils.hashing_client.hashing_client import HashingClient
import pandas as pd

# hash a string
input_string = 'hello'
output = HashingClient.get_hash_uuid_from_string(input_string)
print(output)  # printing hash based on input

# Example usage with a DataFrame
df = DataFrame(
    {
        'col1': ['value1', 'value2'],
        'col2': ['value3', 'value4'],
        'col3': ['value5', 'value6'],
    }
)
hash_columns = ['col1', 'col2']  # columns to hash by

hashed_df = HashingClient.add_dataframe_column_hash_given_column_names(
    df, hash_columns, 'box_id'
)
print(hashed_df)  # column "box_id" added!

Methods:

  • generate_hash(input_data: Union[List[str], DataFrame], hash_columns: List[str] = None, column_name: str = 'hash') -> Union[str, DataFrame]: Generates a hash based on a list of string values or specific columns of a DataFrame.

Database Client

The Database Client provides a set of methods for interacting with a PostgreSQL database, including creating tables, inserting data, and querying data.

Usage:

from tommytomato_utils.database_client.database_client import DatabaseClient, DatabaseClientConfig
from sqlalchemy.orm import declarative_base

Base = declarative_base()

# Configuration for the database client
config = DatabaseClientConfig(
    host='localhost',
    port=5432,
    user='user',
    password='password',
    database='test_db'
)

# Creating the DatabaseClient instance with Base
db_client = DatabaseClient(config, base=Base)

# Test connection
db_client.test_connection()

# Create tables
db_client.create_tables()

# Insert data
data = [
    {'column1': 'value1', 'column2': 'value2'},
    {'column1': 'value3', 'column2': 'value4'}
]
db_client.insert_data('table_name', data)

# Query data
query = "SELECT * FROM table_name"
df = db_client.query_data(query)
print(df)

Classes and Methods:

  • DatabaseClientConfig: Configuration dataclass for the DatabaseClient.
  • DatabaseClient: Main class for interacting with the database.
    • test_connection(): Test the database connection.
    • reflect_schema(): Reflect the database schema.
    • refresh_schema(): Refresh the database schema.
    • session_scope(): Context manager for database sessions.
    • create_tables(): Create tables based on a provided base class. Raises an error if base is not provided.
    • insert_data(table_name: str, data: List[Dict[str, Any]]): Insert data into a specified table.
    • query_data(query): Execute a query and return the results as a DataFrame.
    • execute_sql(sql, params=None): Execute a raw SQL statement.

Logger

The Logger provides logging capabilities to both STDOUT and optionally to a database. It uses a custom logging handler to log messages to a database table if desired. Usage:

import logging

from tommytomato_utils.database_client.database_client import DatabaseClient, DatabaseClientConfig
from tommytomato_utils.logger.configure_logging import configure_logging
from tommytomato_utils.logger.log_status import LogStatus

# Initialize the DatabaseClient
db_client = DatabaseClient(config=DatabaseClientConfig(
  host='localhost',
  port=5432,
  user='user',
  password='password',
  database='database'
))

# Example 1: Logger without database logging
logger1 = configure_logging(log_level=logging.INFO)
logger1.log(LogStatus.STARTED, "Task has started without DB logging.")
logger1.log(LogStatus.COMPLETED, "Task has completed without DB logging.")

# Example 2: Logger with database logging
logger2 = configure_logging(
  db_client=db_client,
  hub_id="hub123",
  run_id="run456",
  user_id="user789",
  tool_name="my_tool",
  log_to_db=True,
  log_level=logging.INFO
)
logger2.log(LogStatus.STARTED, "Task has started with DB logging.")
logger2.log(LogStatus.COMPLETED, "Task has completed with DB logging.")
logger2.log(LogStatus.FAILED, "Task has failed with DB logging.")
logger2.log(LogStatus.IN_PROGRESS, "Task is in progress with DB logging.")

Classes and Methods:

  • Logger: Main class for logging messages.
    • __init__(name: str = "tommytomato_operation_utils", level: int = logging.INFO): Initialize the Logger.
    • get_logger(): Returns the logger instance.
    • log(status: LogStatus, message: str): Logs a message with the given status.
  • DatabaseLoggingHandler: Custom logging handler for logging messages to a database.
    • __init__(db_client: DatabaseClient, hub_id: str, run_id: str, user_id: str, tool_name: str): Initialize the DatabaseLoggingHandler.
    • emit(record: logging.LogRecord): Emit a log record to the database.
  • configure_logging: Function to configure logging based on user preferences.
    • configure_logging(db_client: DatabaseClient = None, hub_id: str = None, run_id: str = None, user_id: str = None, tool_name: str = None, log_to_db: bool = False, log_level: int = logging.INFO): Configures the logging setup.
  • LogStatus: Enum for logging statuses.
    • LogStatus.STARTED: Status for started tasks.
    • LogStatus.COMPLETED: Status for completed tasks.
    • LogStatus.FAILED: Status for failed tasks.
    • LogStatus.IN_PROGRESS: Status for tasks in progress.

Secrets Manager

The Secrets Manager provides functionality to load secrets from environment variables and AWS Secrets Manager.

Usage:

from tommytomato_utils.load_secrets.environment import Environment
from tommytomato_utils.load_secrets.secrets_loader import SecretsLoader

# Determine the environment
env_str = 'TESTING'
current_env = Environment.from_str(env_str)

# List of required secrets
required_secrets = [
    'GDRIVE_CLIENT_SECRET',
    'TOMMY_ADMIN_DJANGO_DB_USER',
    'TOMMY_ADMIN_DJANGO_DB_PASSWORD',
    'OPERATION_DB_USER',
    'OPERATION_DB_PASSWORD'
]

# Load the secrets based on the environment
secrets_loader = SecretsLoader(current_env)
secrets = secrets_loader.load_secrets(required_secrets)

# Use the loaded secrets in your application
GDRIVE_CLIENT_SECRET = secrets.get('GDRIVE_CLIENT_SECRET')
TOMMY_ADMIN_DJANGO_DB_USER = secrets.get('TOMMY_ADMIN_DJANGO_DB_USER')
TOMMY_ADMIN_DJANGO_DB_PASSWORD = secrets.get('TOMMY_ADMIN_DJANGO_DB_PASSWORD')
OPERATION_DB_USER = secrets.get('OPERATION_DB_USER')
OPERATION_DB_PASSWORD = secrets.get('OPERATION_DB_PASSWORD')

Classes and Methods:

  • Environment: Enum class for defining valid environments.
    • possible_environment_values(): Returns a list of possible environment values.
    • from_str(env_str: str): Converts a string to an Environment enum.
    • ErrorWhenReadingInSecretsFromAWSSecretsManagerError: Custom exception for AWS Secrets Manager errors.
  • SecretsLoader: Class for loading secrets from environment variables and AWS Secrets Manager.
    • __init__(environment: Environment): Initialize the SecretsLoader.
    • load_env_files(): Load the base .env file.
    • validate_secrets(secrets: Dict[str, str], required_secrets: List[str]): Validate that all required secrets are present.
    • load_from_env(required_secrets: List[str]): Load secrets from environment variables.
    • load_from_aws(required_secrets: List[str]): Load secrets from AWS Secrets Manager.
    • load_secrets(required_secrets: List[str]): Load secrets from environment variables and AWS Secrets Manager, validating that all required secrets are present.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tommytomato_operation_utils-1.3.0.tar.gz (15.6 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file tommytomato_operation_utils-1.3.0.tar.gz.

File metadata

File hashes

Hashes for tommytomato_operation_utils-1.3.0.tar.gz
Algorithm Hash digest
SHA256 de7ba95936b1e8df693960eed239b9fed9b8db08deb68f2648fd5399b8e0b925
MD5 f1d121261a6b1c9b59e78ef6bf265152
BLAKE2b-256 7640a8391129e7d5606ddbadcba255dbb11ee98d3a8028c8a530961bd54286ed

See more details on using hashes here.

File details

Details for the file tommytomato_operation_utils-1.3.0-py3-none-any.whl.

File metadata

File hashes

Hashes for tommytomato_operation_utils-1.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 090601a7613574c6263c99a31a1a5c2ffffefdb670f26015a0f654ab87af8006
MD5 aa10d69cfb191e8df491fd8277a1263f
BLAKE2b-256 bc757e4693af36fc02dcec9531ef4073f0973ab9060dc4b54cbf684f8451e12e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page