A library to generate function schemas for use in the OpenAI API.
Project description
Why tool2schema?
Sometimes you can provide a large language model (LLM) with functions for it to call, but it needs to follow a specific schema. tool2schema
is a small depedency-free library that converts your functions into that specific schema. So yeah, it's in the name!
Installation
You can install tool2schema
using pip
.
pip3 install tool2schema
Usage
On all functions that you would like to get the schema for, simply add the EnableTool
decorator. Then use the return value of FindToolEnabledSchemas
method directly in your requests to whatever LLM you are using.
from tool2schema import EnableTool
@EnableTool
def my_function1(a: int, b: str = "Hello"):
"""
Example function description.
:param a: First parameter
:param b: Second parameter
"""
# Function code here...
Note: To understand the appropriate format required for tool2schema
to generate the appropriate schema, see the 'How it Works' section.
OpenAI
import my_tools # Module with your functions
from openai import OpenAI
from tool2schema import FindToolEnabledSchemas
client = OpenAI()
completion = client.chat.completions.create(
model="gpt-4-turbo",
tools=FindToolEnabledSchemas(my_tools) # <-- As easy as that!
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Hello!"}
]
)
If finetuning an OpenAI model, then the schema is slightly different.
import my_tools # Module with your functions
from openai import OpenAI
from tool2schema import FindToolEnabledSchemas, SchemaType
client = OpenAI()
completion = client.chat.completions.create(
model="gpt-4-turbo",
tools=FindToolEnabledSchemas(my_tools, SchemaType.OPENAI_TUNE) # <-- As easy as that!
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Hello!"}
]
)
Anthropic
import my_tools # Module with your functions
import anthropic
from tool2schema import FindToolEnabledSchemas, SchemaType
client = anthropic.Anthropic()
response = client.beta.tools.messages.create(
model="claude-3-opus-20240229",
tools=FindToolEnabledSchemas(my_tools, SchemaType.ANTHROPIC_CLAUDE), # <-- As easy as that!
messages=[{"role": "user", "content": "What's the weather like in San Francisco?"}],
)
Mistral
Currently the same as OpenAI.
Public API
In this section we describe in more detail how to utilise this library to its fullest extent.
Configuration
There are a number of setting available for you to tweak.
Name | Description | Default Value |
---|---|---|
ignore_parameters |
A list of parameter names to exclude from the schema | [] |
ignore_all_parameters |
A boolean value indicating whether to exclude all parameters from the schema. When set to true, ignore_parameters and ignore_parameter_descriptions will be ignored. |
False |
ignore_function_description |
A boolean value indicating whether to exclude the function description from the schema. | False |
ignore_parameter_descriptions |
A boolean value indicating whether to exclude all parameter descriptions from the schema | False |
schema_type |
Default schema type to use. | SchemaType.OPENAI_API |
Decorator Configuration
You can provide the EnableTool
decorator with the settings listed above.
For example, to omit parameters b
and c
:
@GPTEnabled(ignore_parameters=["b", "c"])
def my_function(a: int, b: str, c: float):
# Function code here...
Global Configuration
It is also possible to specify the settings globally, so that they apply to all functions unless explicitly overridden. It can be done by editing the global configuration as follows:
import tool2schema
# Ignore all parameters named "a" or "b" by default
tool2schema.CONFIG.ignore_parameters = ["a", "b"]
Module Operations
tool2schema
has methods available to get functions from a module. See below for example usage of each of the public API methods that tool2schema
exposes.
The examples assume the existance of this my_functions module.
from tool2schema import GPTEnabled
@GPTEnabled
def my_function1(a: int, b: str = "Hello"):
"""
Example function description.
:param a: First parameter
:param b: Second parameter
"""
# Function code here...
@GPTEnabled(tags=["tag1"])
def my_function2(a: int, b: str = "Hello"):
"""
Example function description.
:param a: First parameter
:param b: Second parameter
"""
# Function code here...
import my_functions
import tool2schema
# Return all functions with the ToolEnable decorator
functions = tool2schema.FindToolEnabled(my_functions)
schemas = tool2schema.FindToolEnabledSchemas(my_functions)
# Return the function with a ToolEnable decorator and the given name
function = tool2schema.FindToolEnabledByName(my_functions, "my_function1")
schema = tool2schema.FindToolEnabledByNameSchema(my_functions, "my_function1")
# Return all functions with a ToolEnable decorator and the given tag
functions = tool2schema.FindToolEnabledByTag(my_functions, "tag1")
schemas = tool2schema.FindToolEnabledByTagSchemas(my_functions, "tag1")
# Save the schemas of all functions with a ToolEnable decorator to a JSON file
json_path = "path/to/json/file"
tool2schema.SaveToolEnabled(my_functions, json_path)
Function Schema
To get the schema (in JSON format) for a function with the EnableTool
decorator, either use the methods in the Method Operations section, or call the to_json()
method on the function directly.
@GPTEnabled
def my_function(a: int):
"""
Example function description.
:param a: First parameter
"""
# Function code here...
my_function.to_json() # <-- returns the function schema
Note: that the decorator returns a new ToolEnabled
object with additional attributes, but can be called just like the original function.
Function Tags
The EnableTool
decorator also supports the tags
keyword argument. This allows you to add tags to your function schema.
@GPTEnabled(tags=["tag1", "tag2"])
def my_function(a: int, b: str = "Hello"):
"""
Example function description.
:param a: First parameter
:param b: Second parameter
"""
# Function code here...
The tags can then be accessed using the tags
attribute.
my_function.tags # ["tag1", "tag2"]
You can check if a function has a certain tag using the has_tag
method.
my_function.has_tag("tag1") # True
How it Works
tool2schema
uses certain features of your function definition to correctly populate the schema.
- Parameter type hints
- Parameter default values
- Docstring with parameter descriptions
The docstring must be using the Sphinx docstring format. Note: We use the parameter type hints instead of the docstring for parameter types.
Supported Parameter Types
Most of the common types are supported. See type_schema.py for more details.
Any parameter types not supported will be listed as object
in the schema.
Enumerations
Enumeration in the schema are listed as strings of the enumeration names rather than the values. This was a design choice we felt made more sense for use with LLMs. We introduce some additional pre-processing to ensure that the enumeration name strings are mapped back to the correct enum value. Therefore, @EnableTool
decorator allows to invoke the function using the name of the enum member rather than an instance of the class. For example, you may invoke my_function(1, MyEnum.YES)
as my_function(1, "YES")
. See the code for more details.
Enumerations are used to explcitly indicate what values are permitted for the parameter value.
If the enumeration values are not known at the time of defining the function, you can add them later using the add_enum
method.
@GPTEnabled
def my_function(a: int, b: str):
"""
Example function description.
:param a: First parameter
:param b: Second parameter
"""
# Function code here...
my_function.schema.add_enum("b", ["yes", "no"]) # <-- Add enum values for parameter 'b'
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file tool2schema-2.0.0.tar.gz
.
File metadata
- Download URL: tool2schema-2.0.0.tar.gz
- Upload date:
- Size: 17.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.7.1 CPython/3.10.12 Linux/6.5.0-1018-azure
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 35fd5a6f360d2630d3e9be2504e5784a27440abe254ea06e36f220fc59ce95e9 |
|
MD5 | fb71a05ad0f95d28280a4197c1c0cf26 |
|
BLAKE2b-256 | bc70b0a8c09d1f10c8391259c5867d93b0a01cbb699d592a2b40849492137b03 |
File details
Details for the file tool2schema-2.0.0-py3-none-any.whl
.
File metadata
- Download URL: tool2schema-2.0.0-py3-none-any.whl
- Upload date:
- Size: 17.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.7.1 CPython/3.10.12 Linux/6.5.0-1018-azure
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 62e9455b44a47ae3557e81db25cba03372bb858c82d97d73fdeba26e5f2bd3dd |
|
MD5 | 64b76276011faa3323937b7c99db7e9a |
|
BLAKE2b-256 | 6e345c0a3bb71bd3197f9026553f38eeb3838d00797a180ad3f4d9a2db4cf712 |