Some image augmentation tools for yolov5 (and probably other models)
Project description
Some image augmentation tools for yolov5 (and probably other models)
Before you start:
install Pytorch
install https://github.com/ultralytics/yolov5
install https://pypi.org/project/rembg/
pip install tools4yolo
Tested against Windows 10 / Python 3.10 / Anaconda
Formating the needle images
# Get some images from somewhere
# Important! The pictures need to have a transparent background
# The function remove_background_and_resize removes most of the background. If there is some background left, remove it using GIMP or Photoshop
from tools4yolo import remove_background_and_resize
bands = [
r"C:\pics\aerosmith",
r"C:\pics\anthrax",
r"C:\pics\black_sabbath",
r"C:\pics\iron_maiden",
r"C:\pics\judas_priest",
r"C:\pics\kiss",
r"C:\pics\krokus",
r"C:\pics\led_zeppelin",
r"C:\pics\manowar",
r"C:\pics\metalchurch",
r"C:\pics\misfits",
r"C:\pics\motorhead",
r"C:\pics\ozzy",
r"C:\pics\pantera",
r"C:\pics\saint_vitus",
r"C:\pics\saxon",
r"C:\pics\scorpions",
r"C:\pics\slayer",
r"C:\pics\whitesnake",
r"C:\pics\accept",
r"C:\pics\acdc",
]
for folder in bands:
folderband = folder.replace(r"C:\pics", r"C:\pics2")
remove_background_and_resize(
folder=folder, folderout=folderband, maxwidth=640, maxheight=640
)
Augmenting the needle images
# To get some variations of the needle images, use:
from tools4yolo import augment_needle_images
augment_needle_images(
folder="c:\\pics2",
outputfolder="c:\\pics3",
width=640,
height=640,
)
# Make sure that there is no background after calling augment_needle_images
Generating the configuration file
import os
from tools4yolo import generate_ini_file
allbands = [
r"C:\pics3\metallica",
r"C:\pics3\acdc",
r"C:\pics3\aerosmith",
r"C:\pics3\anthrax",
r"C:\pics3\black_sabbath",
r"C:\pics3\iron_maiden",
r"C:\pics3\judas_priest",
r"C:\pics3\kiss",
r"C:\pics3\krokus",
r"C:\pics3\led_zeppelin",
r"C:\pics3\manowar",
r"C:\pics3\metalchurch",
r"C:\pics3\misfits",
r"C:\pics3\motorhead",
r"C:\pics3\ozzy",
r"C:\pics3\pantera",
r"C:\pics3\saint_vitus",
r"C:\pics3\saxon",
r"C:\pics3\scorpions",
r"C:\pics3\slayer",
r"C:\pics3\whitesnake",
r"C:\pics3\accept",
]
allclasses = []
backgroundfolder = r"C:\Backgrounds"
personal_yaml_file = "bandlogos.yaml" # name it however you want
outputfolder = "c:\\bandlogos1\\pics2" # folder will be created if it does not exist
outputinifile = 'c:\\bandlogos1\\training2.ini' # file will be created if it does not exist
os.makedirs(outputfolder,exist_ok=True)
for i, k in enumerate(allbands):
allclasses.append(
{
"classnumber": i,
"classname": k.split(os.sep)[-1],
"random_background_folder": backgroundfolder,
"class_pictures": k,
"personal_yaml_file": personal_yaml_file,
"outputfolder": outputfolder,
"howmany": 1000,
"background_qty": 100,
"processes": 2,
"image_size_width": 640,
"image_size_height": 640,
"needle_size_percentage_min": 0.20,
"needle_size_percentage_max": 0.9,
"blur_image_kernel_min": 1,
"blur_image_kernel_max": 5,
"blur_image_frequency": 10,
"sharpen_image_kernel_min": 1,
"sharpen_image_kernel_max": 6,
"sharpen_image_frequency": 10,
"distorted_resizing_add_min_x": 0.01,
"distorted_resizing_add_max_x": 0.15,
"distorted_resizing_add_min_y": 0.01,
"distorted_resizing_add_max_y": 0.15,
"distorted_resizing_frequency": 10,
"blur_borders_min_x0": 0.01,
"blur_borders_max_x0": 0.1,
"blur_borders_min_x1": 0.01,
"blur_borders_max_x1": 0.1,
"blur_borders_min_y0": 0.01,
"blur_borders_max_y0": 0.1,
"blur_borders_min_y1": 0.01,
"blur_borders_max_y1": 0.1,
"blur_borders_kernel_min": 1,
"blur_borders_kernel_max": 6,
"blur_borders_frequency": 30,
"pixelborder_min": 1,
"pixelborder_max": 20,
"pixelborder_loop_min": 1,
"pixelborder_loop_max": 2,
"pixelborder_frequency": 30,
"perspective_distortion_min_x": 0.01,
"perspective_distortion_max_x": 0.15,
"perspective_distortion_min_y": 0.01,
"perspective_distortion_max_y": 0.15,
"perspective_distortion_percentage": 15,
"transparency_distortion_min": 140,
"transparency_distortion_max": 255,
"transparency_distortion_frequency": 40,
"canny_edge_blur_thresh_lower_min": 10,
"canny_edge_blur_thresh_lower_max": 20,
"canny_edge_blur_thresh_upper_min": 80,
"canny_edge_blur_thresh_upper_max": 90,
"canny_edge_blur_kernel_min": 1,
"canny_edge_blur_kernel_max": 6,
"canny_edge_blur_frequency": 10,
"random_crop_min_x": 0.01,
"random_crop_max_x": 0.10,
"random_crop_min_y": 0.01,
"random_crop_max_y": 0.10,
"random_crop_frequency": 30,
"hue_shift_min": 1,
"hue_shift_max": 180,
"hue_shift_frequency": 90,
"change_contrast_min": 0.8,
"change_contrast_max": 1.2,
"change_contrast_frequency": 30,
"rotate_image_min": 2,
"rotate_image_max": 359,
"rotate_image_frequency": 90,
"colors_to_change_percentage_max": 75,
"colors_to_change_percentage_min": 1,
"colors_to_change_frequency": 90,
"colors_to_change_r_min": 5,
"colors_to_change_r_max": 250,
"colors_to_change_g_min": 5,
"colors_to_change_g_max": 250,
"colors_to_change_b_min": 5,
"colors_to_change_b_max": 250,
"flip_image_left_right_frequency": 2,
"flip_image_up_down_frequency": 2,
"verbose": True,
"bloom_kernel_min": 1,
"bloom_kernel_max": 25,
"bloom_sigmaX_min": 140,
"bloom_sigmaX_max": 240,
"bloom_intensity_min": 4.5,
"bloom_intensity_max": 20.5,
"bloom_frequency": 30,
"fish_distortion_min1": 0.01,
"fish_distortion_max1": 0.4,
"fish_distortion_min2": 0.01,
"fish_distortion_max2": 0.4,
"fish_distortion_min3": 0.01,
"fish_distortion_max3": 0.4,
"fish_distortion_min4": 0.01,
"fish_distortion_max4": 0.03,
"fish_divider_1_min": 1,
"fish_divider_1_max": 2,
"fish_divider_2_min": 1,
"fish_divider_2_max": 4,
"fish_divider_3_min": 1,
"fish_divider_3_max": 2,
"fish_divider_4_min": 2,
"fish_divider_4_max": 4,
"fish_border_add": 0.1,
"fish_frequency": 50,
}
)
inifile=generate_ini_file(allclasses)
print(inifile)
with open(outputinifile,mode='w',encoding='utf-8') as f:
f.write(inifile)
# Example of a generated config file.
[class0]
classnumber:0
classname:metallica
random_background_folder:C:\Backgrounds
class_pictures:C:\pics2\metallica
personal_yaml_file:bandlogos.yaml
outputfolder:c:\bandlogos1\pics
howmany:1400
background_qty:100
processes:4
image_size_width:640
image_size_height:640
needle_size_percentage_min:0.2
needle_size_percentage_max:0.9
blur_image_kernel_min:1
blur_image_kernel_max:5
blur_image_frequency:10
sharpen_image_kernel_min:1
sharpen_image_kernel_max:6
sharpen_image_frequency:10
distorted_resizing_add_min_x:0.01
distorted_resizing_add_max_x:0.15
distorted_resizing_add_min_y:0.01
distorted_resizing_add_max_y:0.15
distorted_resizing_frequency:10
blur_borders_min_x0:0.01
blur_borders_max_x0:0.1
blur_borders_min_x1:0.01
blur_borders_max_x1:0.1
blur_borders_min_y0:0.01
blur_borders_max_y0:0.1
blur_borders_min_y1:0.01
blur_borders_max_y1:0.1
blur_borders_kernel_min:1
blur_borders_kernel_max:6
blur_borders_frequency:30
pixelborder_min:1
pixelborder_max:20
pixelborder_loop_min:1
pixelborder_loop_max:2
pixelborder_frequency:30
perspective_distortion_min_x:0.01
perspective_distortion_max_x:0.15
perspective_distortion_min_y:0.01
perspective_distortion_max_y:0.15
perspective_distortion_percentage:15
transparency_distortion_min:140
transparency_distortion_max:255
transparency_distortion_frequency:40
canny_edge_blur_thresh_lower_min:10
canny_edge_blur_thresh_lower_max:20
canny_edge_blur_thresh_upper_min:80
canny_edge_blur_thresh_upper_max:90
canny_edge_blur_kernel_min:1
canny_edge_blur_kernel_max:6
canny_edge_blur_frequency:10
random_crop_min_x:0.01
random_crop_max_x:0.1
random_crop_min_y:0.01
random_crop_max_y:0.1
random_crop_frequency:30
hue_shift_min:1
hue_shift_max:180
hue_shift_frequency:90
change_contrast_min:0.8
change_contrast_max:1.2
change_contrast_frequency:30
rotate_image_min:2
rotate_image_max:359
rotate_image_frequency:90
colors_to_change_percentage_max:75
colors_to_change_percentage_min:1
colors_to_change_frequency:90
colors_to_change_r_min:5
colors_to_change_r_max:250
colors_to_change_g_min:5
colors_to_change_g_max:250
colors_to_change_b_min:5
colors_to_change_b_max:250
flip_image_left_right_frequency:2
flip_image_up_down_frequency:2
verbose:True
bloom_kernel_min:1
bloom_kernel_max:25
bloom_sigmaX_min:140
bloom_sigmaX_max:240
bloom_intensity_min:4.5
bloom_intensity_max:20.5
bloom_frequency:30
fish_distortion_min1:0.01
fish_distortion_max1:0.4
fish_distortion_min2:0.01
fish_distortion_max2:0.4
fish_distortion_min3:0.01
fish_distortion_max3:0.4
fish_distortion_min4:0.01
fish_distortion_max4:0.03
fish_divider_1_min:1
fish_divider_1_max:2
fish_divider_2_min:1
fish_divider_2_max:4
fish_divider_3_min:1
fish_divider_3_max:2
fish_divider_4_min:2
fish_divider_4_max:4
fish_border_add:0.1
fish_frequency:50
[class1]
classnumber:1
classname:acdc
random_background_folder:C:\Backgrounds
class_pictures:C:\pics2\acdc
personal_yaml_file:bandlogos.yaml
outputfolder:c:\bandlogos1\pics
howmany:1400
background_qty:100
processes:4
image_size_width:640
image_size_height:640
needle_size_percentage_min:0.2
needle_size_percentage_max:0.9
blur_image_kernel_min:1
blur_image_kernel_max:5
blur_image_frequency:10
sharpen_image_kernel_min:1
sharpen_image_kernel_max:6
sharpen_image_frequency:10
distorted_resizing_add_min_x:0.01
distorted_resizing_add_max_x:0.15
distorted_resizing_add_min_y:0.01
distorted_resizing_add_max_y:0.15
distorted_resizing_frequency:10
blur_borders_min_x0:0.01
blur_borders_max_x0:0.1
blur_borders_min_x1:0.01
blur_borders_max_x1:0.1
blur_borders_min_y0:0.01
blur_borders_max_y0:0.1
blur_borders_min_y1:0.01
blur_borders_max_y1:0.1
blur_borders_kernel_min:1
blur_borders_kernel_max:6
blur_borders_frequency:30
pixelborder_min:1
pixelborder_max:20
pixelborder_loop_min:1
pixelborder_loop_max:2
pixelborder_frequency:30
perspective_distortion_min_x:0.01
perspective_distortion_max_x:0.15
perspective_distortion_min_y:0.01
perspective_distortion_max_y:0.15
perspective_distortion_percentage:15
transparency_distortion_min:140
transparency_distortion_max:255
transparency_distortion_frequency:40
canny_edge_blur_thresh_lower_min:10
canny_edge_blur_thresh_lower_max:20
canny_edge_blur_thresh_upper_min:80
canny_edge_blur_thresh_upper_max:90
canny_edge_blur_kernel_min:1
canny_edge_blur_kernel_max:6
canny_edge_blur_frequency:10
random_crop_min_x:0.01
random_crop_max_x:0.1
random_crop_min_y:0.01
random_crop_max_y:0.1
random_crop_frequency:30
hue_shift_min:1
hue_shift_max:180
hue_shift_frequency:90
change_contrast_min:0.8
change_contrast_max:1.2
change_contrast_frequency:30
rotate_image_min:2
rotate_image_max:359
rotate_image_frequency:90
colors_to_change_percentage_max:75
colors_to_change_percentage_min:1
colors_to_change_frequency:90
colors_to_change_r_min:5
colors_to_change_r_max:250
colors_to_change_g_min:5
colors_to_change_g_max:250
colors_to_change_b_min:5
colors_to_change_b_max:250
flip_image_left_right_frequency:2
flip_image_up_down_frequency:2
verbose:True
bloom_kernel_min:1
bloom_kernel_max:25
bloom_sigmaX_min:140
bloom_sigmaX_max:240
bloom_intensity_min:4.5
bloom_intensity_max:20.5
bloom_frequency:30
fish_distortion_min1:0.01
fish_distortion_max1:0.4
fish_distortion_min2:0.01
fish_distortion_max2:0.4
fish_distortion_min3:0.01
fish_distortion_max3:0.4
fish_distortion_min4:0.01
fish_distortion_max4:0.03
fish_divider_1_min:1
fish_divider_1_max:2
fish_divider_2_min:1
fish_divider_2_max:4
fish_divider_3_min:1
fish_divider_3_max:2
fish_divider_4_min:2
fish_divider_4_max:4
fish_border_add:0.1
fish_frequency:50
...
Generating the data set, and training the model
from tools4yolo import start_yolov5_training
if __name__ == "__main__": # necessary - multiprocessing
start_yolov5_training(
cfgfile=r"C:\bandlogos1\training2.ini",
ptfile=r"C:\bandlogos1\best1.pt",
generate_images=True,
train_model=True,
model_file="yolov5m.yaml",
hypfile="hyp.scratch-low.yaml",
batch=16,
epochs=35,
workers=3,
save_period=1,
cache="disk",
)
Using the trained model
from cv2imshow.cv2imshow import cv2_imshow_multi
from tools4yolo import Yolov5Detect
from fast_ctypes_screenshots import (
ScreenshotOfOneMonitor,
)
ptfile = [r"C:\bandlogos1\pics1\dataset\splitset\bandlogos\weights\best.pt"]
yv = Yolov5Detect(
modelfiles=ptfile, repo_or_dir="./yolov5", model="custom", source="local"
)
try:
with ScreenshotOfOneMonitor(
monitor=0, ascontiguousarray=False
) as screenshots_monitor:
while True:
img5 = screenshots_monitor.screenshot_one_monitor()
li = yv.detect(
images=[
img5
],
confidence_thresh=.4,
bgr_to_rgb=False,
draw_output=True,
#save_folder="c:\\outputfolderyolo3v",
)
cv2_imshow_multi(
title="pic3",
image=li[0][-1],
killkeys="ctrl+alt+h", # switch on/off
)
except KeyboardInterrupt:
pass
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
tools4yolo-0.11.tar.gz
(128.6 kB
view details)
Built Distribution
tools4yolo-0.11-py3-none-any.whl
(128.9 kB
view details)
File details
Details for the file tools4yolo-0.11.tar.gz
.
File metadata
- Download URL: tools4yolo-0.11.tar.gz
- Upload date:
- Size: 128.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c1abd6bc59bb946ad45e0a321d33fc074238b32a35a3b135c2ece72872d3f12f |
|
MD5 | a010f63790bed1025176d3b8eb304d54 |
|
BLAKE2b-256 | b7576e659feaf2f404a6f57eb9d52fce435355319b70619e930a2653228bbc3d |
File details
Details for the file tools4yolo-0.11-py3-none-any.whl
.
File metadata
- Download URL: tools4yolo-0.11-py3-none-any.whl
- Upload date:
- Size: 128.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 10c66f1053a0e2d5962f72afca17921eb1ec788c48c8fbb826604810b2adf88e |
|
MD5 | 90ab9325df473f4c0aaf3c8c07518b87 |
|
BLAKE2b-256 | a43b699241e8d45ef6122251526cb0e5c732706dc59fe6e93e9f56eba88bc745 |