Implemetation XAI in Computer Vision (Pytorch)
Project description
tootorch
Implemetation XAI in Computer Vision (Pytorch)
Requirements
torch
opencv-python
pillow
h5py
tqdm
Installation
pip install tootorch
Interpretable Methods
Attribution Methods
- Vanilla Backpropagation (VBP) [Notebook]
- Input x Backpropagation (IB) [Notebook]
- DeconvNet [1] [Notebook]
- Guided Backpropagation (GB) [2] [Notebook]
- Integrated Gradients (IG) [3] [Notebook]
- Grad-CAM (GC) [4] [Notebook]
- Guided Grad-CAM (GB-GC) [4] [Notebook]
Ensemble Methods
- SmoothGrad (SG) [5]
- SmoothGrad-Squared (SG-SQ) [6]
- SmoothGrad-VAR (SG-VAR) [6]
Evaluation
- Coherence
- Selectivity
- Remove and Retrain (ROAR) [6]
- Keep and Retrain (KAR) [6]
Attention Methods
- Residual Attention Network (RAN) [7]
- Class Activation Methods (CAM) [8]
- Convolutional Block Attention Module (CBAM) [9]
- Wide Attention Residual Network (WARN) [10]
Reference
-
[1] Zeiler, M. D., & Fergus, R. (2014, September). Visualizing and understanding convolutional networks. In European conference on computer vision (pp. 818-833). Springer, Cham. [Paper] [Korean version]
-
[2] Springenberg, J. T., Dosovitskiy, A., Brox, T., & Riedmiller, M. (2014). Striving for simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806. [Paper]
-
[3] Sundararajan, M., Taly, A., & Yan, Q. (2017, August). Axiomatic attribution for deep networks. In Proceedings of the 34th International Conference on Machine Learning-Volume 70 (pp. 3319-3328). JMLR. org. [Paper]
-
[4] Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2017). Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision (pp. 618-626). [Paper] [Korean version]
-
[5] Smilkov, D., Thorat, N., Kim, B., Viégas, F., & Wattenberg, M. (2017). Smoothgrad: removing noise by adding noise. arXiv preprint arXiv:1706.03825. [Paper] [Korean version]
-
[6] Hooker, S., Erhan, D., Kindermans, P. J., & Kim, B. (2018). Evaluating feature importance estimates. arXiv preprint arXiv:1806.10758. [Paper] [Korean version]
-
[7] Wang, F., Jiang, M., Qian, C., Yang, S., Li, C., Zhang, H., ... & Tang, X. (2017). Residual attention network for image classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 3156-3164). [Paper]
-
[8] Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., & Torralba, A. (2016). Learning deep features for discriminative localization. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2921-2929). [Paper]
-
[9] Woo, S., Park, J., Lee, J. Y., & So Kweon, I. (2018). Cbam: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV) (pp. 3-19). [Paper]
-
[10] Rodríguez, P., Gonfaus, J. M., Cucurull, G., XavierRoca, F., & Gonzalez, J. (2018). Attend and rectify: a gated attention mechanism for fine-grained recovery. In Proceedings of the European Conference on Computer Vision (ECCV) (pp. 349-364). [Paper]
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distribution
File details
Details for the file tootorch-1.9-py3-none-any.whl
.
File metadata
- Download URL: tootorch-1.9-py3-none-any.whl
- Upload date:
- Size: 60.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6d9bbcc10acba72757a1478104f79e8614a8653118f5cc02a9de8c2a2da35e78 |
|
MD5 | 453cfe896a63bc4cc527bb09eb38a2b2 |
|
BLAKE2b-256 | 388d6b774f3a2bea793a921f41fa88bf999df32c7511100a4ce4facf4346b2f7 |