Skip to main content

Implemetation XAI in Computer Vision (Pytorch)

Project description

tootorch

Implemetation XAI in Computer Vision (Pytorch)

Requirements

torch
opencv-python
pillow
h5py
tqdm

Installation

pip install tootorch

Interpretable Methods

Attribution Methods

Ensemble Methods

  • SmoothGrad (SG) [5]
  • SmoothGrad-Squared (SG-SQ) [6]
  • SmoothGrad-VAR (SG-VAR) [6]

Evaluation

  • Coherence
  • Selectivity
  • Remove and Retrain (ROAR) [6]
  • Keep and Retrain (KAR) [6]

Attention Methods

  • Residual Attention Network (RAN) [7]
  • Class Activation Methods (CAM) [8]
  • Convolutional Block Attention Module (CBAM) [9]
  • Wide Attention Residual Network (WARN) [10]

Reference

  • [1] Zeiler, M. D., & Fergus, R. (2014, September). Visualizing and understanding convolutional networks. In European conference on computer vision (pp. 818-833). Springer, Cham. [Paper] [Korean version]

  • [2] Springenberg, J. T., Dosovitskiy, A., Brox, T., & Riedmiller, M. (2014). Striving for simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806. [Paper]

  • [3] Sundararajan, M., Taly, A., & Yan, Q. (2017, August). Axiomatic attribution for deep networks. In Proceedings of the 34th International Conference on Machine Learning-Volume 70 (pp. 3319-3328). JMLR. org. [Paper]

  • [4] Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2017). Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision (pp. 618-626). [Paper] [Korean version]

  • [5] Smilkov, D., Thorat, N., Kim, B., Viégas, F., & Wattenberg, M. (2017). Smoothgrad: removing noise by adding noise. arXiv preprint arXiv:1706.03825. [Paper] [Korean version]

  • [6] Hooker, S., Erhan, D., Kindermans, P. J., & Kim, B. (2018). Evaluating feature importance estimates. arXiv preprint arXiv:1806.10758. [Paper] [Korean version]

  • [7] Wang, F., Jiang, M., Qian, C., Yang, S., Li, C., Zhang, H., ... & Tang, X. (2017). Residual attention network for image classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 3156-3164). [Paper]

  • [8] Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., & Torralba, A. (2016). Learning deep features for discriminative localization. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2921-2929). [Paper]

  • [9] Woo, S., Park, J., Lee, J. Y., & So Kweon, I. (2018). Cbam: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV) (pp. 3-19). [Paper]

  • [10] Rodríguez, P., Gonfaus, J. M., Cucurull, G., XavierRoca, F., & Gonzalez, J. (2018). Attend and rectify: a gated attention mechanism for fine-grained recovery. In Proceedings of the European Conference on Computer Vision (ECCV) (pp. 349-364). [Paper]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

tootorch-1.9-py3-none-any.whl (60.0 kB view details)

Uploaded Python 3

File details

Details for the file tootorch-1.9-py3-none-any.whl.

File metadata

  • Download URL: tootorch-1.9-py3-none-any.whl
  • Upload date:
  • Size: 60.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for tootorch-1.9-py3-none-any.whl
Algorithm Hash digest
SHA256 6d9bbcc10acba72757a1478104f79e8614a8653118f5cc02a9de8c2a2da35e78
MD5 453cfe896a63bc4cc527bb09eb38a2b2
BLAKE2b-256 388d6b774f3a2bea793a921f41fa88bf999df32c7511100a4ce4facf4346b2f7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page